Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66107 by Rio Michael last updated on 09/Aug/19

Given that S_n  = ((a(1 −r^n ))/(1−r)) , r ≠ 1, show that ((S_(3n)  −S_(2n) )/(S_n  )) = r^(2n)   hence given that r =(1/2) find Σ_(n=0) ^∞ (((S_(3n)  −S_(2n) )/S_n ))

$${Given}\:{that}\:{S}_{{n}} \:=\:\frac{{a}\left(\mathrm{1}\:−{r}^{{n}} \right)}{\mathrm{1}−{r}}\:,\:{r}\:\neq\:\mathrm{1},\:{show}\:{that}\:\frac{{S}_{\mathrm{3}{n}} \:−{S}_{\mathrm{2}{n}} }{{S}_{{n}} \:}\:=\:{r}^{\mathrm{2}{n}} \\ $$$${hence}\:{given}\:{that}\:{r}\:=\frac{\mathrm{1}}{\mathrm{2}}\:{find}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\frac{{S}_{\mathrm{3}{n}} \:−{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\right) \\ $$

Commented by Prithwish sen last updated on 09/Aug/19

((S_(3n) −S_(2n) )/S_n ) = ((1−r^(3n) −1+r^(2n) )/(1−r^n )) = ((r^(2n) (1−r^n ))/((1−r^n ))) = r^(2n)   Σ_(n=0) ^∞ r^(2n) =((1/2))^0 +((1/2))^2 +((1/2))^4 +..... = (1/(1−(1/4))) = (4/3)  please check.

$$\frac{\mathrm{S}_{\mathrm{3n}} −\mathrm{S}_{\mathrm{2n}} }{\mathrm{S}_{\mathrm{n}} }\:=\:\frac{\mathrm{1}−\mathrm{r}^{\mathrm{3n}} −\mathrm{1}+\mathrm{r}^{\mathrm{2n}} }{\mathrm{1}−\mathrm{r}^{\mathrm{n}} }\:=\:\frac{\mathrm{r}^{\mathrm{2n}} \left(\mathrm{1}−\mathrm{r}^{\mathrm{n}} \right)}{\left(\mathrm{1}−\mathrm{r}^{\mathrm{n}} \right)}\:=\:\mathrm{r}^{\mathrm{2n}} \\ $$$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{r}^{\mathrm{2n}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{0}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +.....\:=\:\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}\:=\:\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$

Commented by Rio Michael last updated on 09/Aug/19

correct sir thanks

$${correct}\:{sir}\:{thanks} \\ $$

Commented by mathmax by abdo last updated on 10/Aug/19

we have ((S_(3n) −S_(2n) )/S_n ) =((a(1−r^(3n) )−a(1−r^(2n) ))/(a(1−r^n ))) =((r^(2n) −r^(3n) )/(1−r^n ))  =((r^(2n) (1−r^n ))/(1−r^n )) =r^(2n)    with r≠1  ⇒Σ_(n=0) ^∞  ((S_(3n) −S_(2n) )/S_n ) =Σ_(n=0) ^∞  r^(2n)  =((1−r^(2(n+1)) )/(1−r^2 ))  and for ∣r∣<1    we get Σ_(n=0) ^∞  r^(2n)  =(1/(1−r^2 )) ⇒  Σ_(n=0) ^∞  ((S_(3n) −S_(2n) )/S_n ) =(1/(1−((1/4)))) =(4/3)

$${we}\:{have}\:\frac{{S}_{\mathrm{3}{n}} −{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\:=\frac{{a}\left(\mathrm{1}−{r}^{\mathrm{3}{n}} \right)−{a}\left(\mathrm{1}−{r}^{\mathrm{2}{n}} \right)}{{a}\left(\mathrm{1}−{r}^{{n}} \right)}\:=\frac{{r}^{\mathrm{2}{n}} −{r}^{\mathrm{3}{n}} }{\mathrm{1}−{r}^{{n}} } \\ $$$$=\frac{{r}^{\mathrm{2}{n}} \left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}^{{n}} }\:={r}^{\mathrm{2}{n}} \:\:\:{with}\:{r}\neq\mathrm{1} \\ $$$$\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{S}_{\mathrm{3}{n}} −{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{\mathrm{2}{n}} \:=\frac{\mathrm{1}−{r}^{\mathrm{2}\left({n}+\mathrm{1}\right)} }{\mathrm{1}−{r}^{\mathrm{2}} } \\ $$$${and}\:{for}\:\mid{r}\mid<\mathrm{1}\:\:\:\:{we}\:{get}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{\mathrm{2}{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{r}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{S}_{\mathrm{3}{n}} −{S}_{\mathrm{2}{n}} }{{S}_{{n}} }\:=\frac{\mathrm{1}}{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}\:=\frac{\mathrm{4}}{\mathrm{3}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com