Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 66161 by peter frank last updated on 09/Aug/19

Answered by mr W last updated on 10/Aug/19

if a line y=mx+c tangents the ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1  we have  (x^2 /a^2 )+(((mx+c)^2 )/b^2 )=1  b^2 x^2 +a^2 (m^2 x^2 +2mcx+c^2 )=a^2 b^2   (m^2 a^2 +b^2 )x^2 +2mca^2 x+a^2 (c^2 −b^2 )=0  Δ=4m^2 c^2 a^4 −4(m^2 a^2 +b^2 )a^2 (c^2 −b^2 )=0  m^2 c^2 a^2 −(m^2 a^2 +b^2 )(c^2 −b^2 )=0  ⇒m^2 a^2 +b^2 =c^2     let′s say all the three ellipses have a  common tangent line y=mx+c, then  m^2 a_1 ^2 +b_1 ^2 =c^2     ...(i)  m^2 a_2 ^2 +b_2 ^2 =c^2     ...(ii)  m^2 a_3 ^2 +b_3 ^2 =c^2     ...(iii)  (i)−(ii):  m^2 (a_1 ^2 −a_2 ^2 )+(b_1 ^2 −b_2 ^2 )=0   ...(iv)  (i)−(iii):  m^2 (a_1 ^2 −a_3 ^2 )+(b_1 ^2 −b_3 ^2 )=0   ...(v)  from (iv) and (v):  (a_1 ^2 −a_3 ^2 )(b_1 ^2 −b_2 ^2 )−(a_1 ^2 −a_2 ^2 )(b_1 ^2 −b_3 ^2 )=0  a_1 ^2 b_1 ^2 −a_3 ^2 b_1 ^2 −a_1 ^2 b_2 ^2 +a_3 ^2 b_2 ^2 −a_1 ^2 b_1 ^2 +a_2 ^2 b_1 ^2 +a_1 ^2 b_3 ^2 −a_2 ^2 b_3 ^2 =0  ⇒(a_2 ^2 b_3 ^2 −a_3 ^2 b_2 ^2 )−(a_1 ^2 b_3 ^2 −a_3 ^2 b_1 ^2 )+(a_1 ^2 b_2 ^2 −a_2 ^2 b_1 ^2 )=0  ⇒ determinant ((a_1 ^2 ,b_1 ^2 ,1),(a_2 ^2 ,b_2 ^2 ,1),(a_3 ^2 ,b_3 ^2 ,1))=0

ifaliney=mx+ctangentstheellipsex2a2+y2b2=1wehavex2a2+(mx+c)2b2=1b2x2+a2(m2x2+2mcx+c2)=a2b2(m2a2+b2)x2+2mca2x+a2(c2b2)=0Δ=4m2c2a44(m2a2+b2)a2(c2b2)=0m2c2a2(m2a2+b2)(c2b2)=0m2a2+b2=c2letssayallthethreeellipseshaveacommontangentliney=mx+c,thenm2a12+b12=c2...(i)m2a22+b22=c2...(ii)m2a32+b32=c2...(iii)(i)(ii):m2(a12a22)+(b12b22)=0...(iv)(i)(iii):m2(a12a32)+(b12b32)=0...(v)from(iv)and(v):(a12a32)(b12b22)(a12a22)(b12b32)=0a12b12a32b12a12b22+a32b22a12b12+a22b12+a12b32a22b32=0(a22b32a32b22)(a12b32a32b12)+(a12b22a22b12)=0|a12b121a22b221a32b321|=0

Commented by peter frank last updated on 10/Aug/19

thank you very much

thankyouverymuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com