Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66169 by mathmax by abdo last updated on 10/Aug/19

find the values of  ∫_0 ^∞  cos(x^2 )dx and ∫_0 ^∞  sin(x^2 )dx(fresnel integrals)  by using Γ(z) =∫_0 ^∞  t^(z−1)  e^(−t)  dt

$${find}\:{the}\:{values}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:{and}\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\left({fresnel}\:{integrals}\right) \\ $$$${by}\:{using}\:\Gamma\left({z}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{z}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\: \\ $$

Commented by mathmax by abdo last updated on 10/Aug/19

we have ∫_0 ^∞ cos(x^2 )dx =Re(∫_0 ^∞  e^(−ix^2 ) dx)  changement ix^2 =t  give x^2 =−it ⇒x =(−it)^(1/2)  =(−i)^(1/2) t^(1/2)  ⇒dx =(1/2)(−i)^(1/2)  t^((1/2)−1)   so ∫_0 ^∞  e^(−ix^2 ) dx =(1/2)(−i)^(1/2)   ∫_0 ^∞  t^((1/2)−1)  e^(−t) dt  =(1/2)e^(−((iπ)/4))  .Γ((1/2)) =(1/2)Γ((1/2)){(1/(√2))−(i/(√2))} ⇒  ∫_0 ^∞  cos(x^2 )dx =(1/(2(√2)))Γ((1/2))   we have Γ(x).Γ(1−x)=(π/(sin(πx)))  ⇒Γ^2 ((1/2)) =π ⇒Γ((1/2))=(√π) ⇒∫_0 ^∞  cos(x^2 )dx  =((√π)/(2(√2))) =((√(2π))/4)  also ∫_0 ^∞  sin(x^2 )dx =−Im(∫_0 ^∞  e^(−ix^2 ) dx) ⇒  ∫_0 ^∞  sin(x^2 )dx =((√(2π))/4)

$${we}\:{have}\:\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{2}} \right){dx}\:={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ix}^{\mathrm{2}} } {dx}\right)\:\:{changement}\:{ix}^{\mathrm{2}} ={t} \\ $$$${give}\:{x}^{\mathrm{2}} =−{it}\:\Rightarrow{x}\:=\left(−{it}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\left(−{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {t}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\Rightarrow{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(−{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \\ $$$${so}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ix}^{\mathrm{2}} } {dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(−{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\int_{\mathrm{0}} ^{\infty} \:{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:.\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left\{\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}−\frac{{i}}{\sqrt{\mathrm{2}}}\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\:\:{we}\:{have}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)=\frac{\pi}{{sin}\left(\pi{x}\right)} \\ $$$$\Rightarrow\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=\pi\:\Rightarrow\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\sqrt{\pi}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{\mathrm{2}} \right){dx} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt{\mathrm{2}}}\:=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4}} \\ $$$${also}\:\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\:=−{Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{−{ix}^{\mathrm{2}} } {dx}\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{sin}\left({x}^{\mathrm{2}} \right){dx}\:=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com