Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 66172 by mathmax by abdo last updated on 10/Aug/19

  let A_n =Π_(k=1) ^n (1+(k^2 /n^2 ))   calculate lim_(n→+∞)  ((ln(A_n ))/n)

$$ \\ $$$${let}\:{A}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\:\:\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:\frac{{ln}\left({A}_{{n}} \right)}{{n}} \\ $$

Commented by Prithwish sen last updated on 11/Aug/19

lim_(n→∞) (1/n) Σ_(k=1) ^n ln[1+((k/n))^2 ] = ∫_0 ^1 ln(1+x^2 )dx  =[xln(1+x^2 )−2x+2tan^(−1) x]_0 ^1 =ln2 −2+(π/2)  please check.

$$\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{n}}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left[\mathrm{1}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} \right]\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$=\left[\mathrm{xln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)−\mathrm{2x}+\mathrm{2tan}^{−\mathrm{1}} \mathrm{x}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{ln2}\:−\mathrm{2}+\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$

Commented by mathmax by abdo last updated on 10/Aug/19

we have ln(A_n )=Σ_(k=1) ^n ln(1+(k^2 /n^2 )) ⇒((ln(A_n ))/n) =(1/n)Σ_(k=1) ^n ln(1+((k/n))^2 )  we get a Rieman sum ⇒lim_(n→+∞) ((ln(A_n ))/n) =∫_0 ^1 ln(1+x^2 )dx  by parts ∫_0 ^1 ln(1+x^2 )dx =[xln(1+x^2 )]_0 ^1  −∫_0 ^1 x((2x)/(1+x^2 ))dx  =ln(2)−2 ∫_0 ^1  ((x^2 +1−1)/(x^2  +1))dx =ln(2)−2 +2 ∫_0 ^1  (dx/(1+x^2 ))  =ln(2)−2 +2[arctanx]_0 ^1 =ln(2)−2+2×(π/4) =ln(2)−2+(π/2)  finally lim_(n→+∞)  ((ln(A_n ))/n) =(π/2) +ln(2)−2 .

$${we}\:{have}\:{ln}\left({A}_{{n}} \right)=\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)\:\Rightarrow\frac{{ln}\left({A}_{{n}} \right)}{{n}}\:=\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left(\mathrm{1}+\left(\frac{{k}}{{n}}\right)^{\mathrm{2}} \right) \\ $$$${we}\:{get}\:{a}\:{Rieman}\:{sum}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \frac{{ln}\left({A}_{{n}} \right)}{{n}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx} \\ $$$${by}\:{parts}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}\:=\left[{xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} {x}\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$={ln}\left(\mathrm{2}\right)−\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}} +\mathrm{1}−\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:={ln}\left(\mathrm{2}\right)−\mathrm{2}\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$={ln}\left(\mathrm{2}\right)−\mathrm{2}\:+\mathrm{2}\left[{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} ={ln}\left(\mathrm{2}\right)−\mathrm{2}+\mathrm{2}×\frac{\pi}{\mathrm{4}}\:={ln}\left(\mathrm{2}\right)−\mathrm{2}+\frac{\pi}{\mathrm{2}} \\ $$$${finally}\:{lim}_{{n}\rightarrow+\infty} \:\frac{{ln}\left({A}_{{n}} \right)}{{n}}\:=\frac{\pi}{\mathrm{2}}\:+{ln}\left(\mathrm{2}\right)−\mathrm{2}\:. \\ $$

Commented by Prithwish sen last updated on 10/Aug/19

thanks sir.

$$\mathrm{thanks}\:\mathrm{sir}. \\ $$

Commented by mathmax by abdo last updated on 10/Aug/19

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com