Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66228 by Rio Michael last updated on 11/Aug/19

prove that   ∫_2 ^4 ((6x +1)/((2x−3)(3x−2)))dx = ln 10

$${prove}\:{that}\: \\ $$$$\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{6}{x}\:+\mathrm{1}}{\left(\mathrm{2}{x}−\mathrm{3}\right)\left(\mathrm{3}{x}−\mathrm{2}\right)}{dx}\:=\:{ln}\:\mathrm{10} \\ $$

Commented by Prithwish sen last updated on 11/Aug/19

((6x+1)/((2x−3)(3x−2))) = (A/(2x−3)) + (B/(3x−2))         6x+1 = A(3x−2) + B(2x−3)  putting  x = (2/3) we get  5 = B((4/3) −3)⇒B = −3  putting x = (3/2) we get  10=A((9/2) −2)⇒B=4  ∫_2 ^4 ((6x+1 )/((2x−3)(3x−2))) dx = ∫_2 ^4 [(4/(2x−3)) − (3/(3x−2))]dx  =[ 2ln∣2x−3∣−ln∣3x−2∣]_2 ^4 =2ln5−ln10+1n4  =ln((25×4)/(10)) = ln10    proved.

$$\frac{\mathrm{6x}+\mathrm{1}}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}−\mathrm{2}\right)}\:=\:\frac{\mathrm{A}}{\mathrm{2x}−\mathrm{3}}\:+\:\frac{\mathrm{B}}{\mathrm{3x}−\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\mathrm{6x}+\mathrm{1}\:=\:\mathrm{A}\left(\mathrm{3x}−\mathrm{2}\right)\:+\:\mathrm{B}\left(\mathrm{2x}−\mathrm{3}\right) \\ $$$$\mathrm{putting}\:\:\mathrm{x}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{5}\:=\:\mathrm{B}\left(\frac{\mathrm{4}}{\mathrm{3}}\:−\mathrm{3}\right)\Rightarrow\mathrm{B}\:=\:−\mathrm{3} \\ $$$$\mathrm{putting}\:\mathrm{x}\:=\:\frac{\mathrm{3}}{\mathrm{2}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{10}=\mathrm{A}\left(\frac{\mathrm{9}}{\mathrm{2}}\:−\mathrm{2}\right)\Rightarrow\mathrm{B}=\mathrm{4} \\ $$$$\int_{\mathrm{2}} ^{\mathrm{4}} \frac{\mathrm{6x}+\mathrm{1}\:}{\left(\mathrm{2x}−\mathrm{3}\right)\left(\mathrm{3x}−\mathrm{2}\right)}\:\mathrm{dx}\:=\:\int_{\mathrm{2}} ^{\mathrm{4}} \left[\frac{\mathrm{4}}{\mathrm{2x}−\mathrm{3}}\:−\:\frac{\mathrm{3}}{\mathrm{3x}−\mathrm{2}}\right]\mathrm{dx} \\ $$$$=\left[\:\mathrm{2ln}\mid\mathrm{2x}−\mathrm{3}\mid−\mathrm{ln}\mid\mathrm{3x}−\mathrm{2}\mid\right]_{\mathrm{2}} ^{\mathrm{4}} =\mathrm{2ln5}−\mathrm{ln10}+\mathrm{1n4} \\ $$$$=\mathrm{ln}\frac{\mathrm{25}×\mathrm{4}}{\mathrm{10}}\:=\:\mathrm{ln10}\:\:\:\:\mathrm{proved}. \\ $$$$ \\ $$$$ \\ $$

Commented by Rio Michael last updated on 11/Aug/19

thanks

$${thanks} \\ $$

Commented by mathmax by abdo last updated on 11/Aug/19

let I =∫_2 ^4  ((6x+1)/((2x−3)(3x−2)))dx  let decompose F(x)=((6x+1)/((2x−3)(3x−2)))  F(x)=(a/(2x−3))+(b/(3x−2))  a=lim_(x→(3/2)) (2x−3)F(x)=((10)/5)×2 =4  b=lim_(x→(2/3)) (3x−2)F(x)=(5/((4/3)−3)) =5×(−(3/5))=−3 ⇒  F(x)=(4/(2x−3))−(3/(3x−2)) ⇒∫_2 ^4  F(x)dx =∫_2 ^4 ((4/(2x−3))−(3/(3x−2)))dx  =[2ln∣2x−3∣−ln∣3x−2∣]_2 ^4 =2ln(5)−ln(10)+ln(4)  =2ln(5)−ln(2)−ln(5)+2ln(2) =ln(5)+ln(2)=ln(10)

$${let}\:{I}\:=\int_{\mathrm{2}} ^{\mathrm{4}} \:\frac{\mathrm{6}{x}+\mathrm{1}}{\left(\mathrm{2}{x}−\mathrm{3}\right)\left(\mathrm{3}{x}−\mathrm{2}\right)}{dx}\:\:{let}\:{decompose}\:{F}\left({x}\right)=\frac{\mathrm{6}{x}+\mathrm{1}}{\left(\mathrm{2}{x}−\mathrm{3}\right)\left(\mathrm{3}{x}−\mathrm{2}\right)} \\ $$$${F}\left({x}\right)=\frac{{a}}{\mathrm{2}{x}−\mathrm{3}}+\frac{{b}}{\mathrm{3}{x}−\mathrm{2}} \\ $$$${a}={lim}_{{x}\rightarrow\frac{\mathrm{3}}{\mathrm{2}}} \left(\mathrm{2}{x}−\mathrm{3}\right){F}\left({x}\right)=\frac{\mathrm{10}}{\mathrm{5}}×\mathrm{2}\:=\mathrm{4} \\ $$$${b}={lim}_{{x}\rightarrow\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{3}{x}−\mathrm{2}\right){F}\left({x}\right)=\frac{\mathrm{5}}{\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{3}}\:=\mathrm{5}×\left(−\frac{\mathrm{3}}{\mathrm{5}}\right)=−\mathrm{3}\:\Rightarrow \\ $$$${F}\left({x}\right)=\frac{\mathrm{4}}{\mathrm{2}{x}−\mathrm{3}}−\frac{\mathrm{3}}{\mathrm{3}{x}−\mathrm{2}}\:\Rightarrow\int_{\mathrm{2}} ^{\mathrm{4}} \:{F}\left({x}\right){dx}\:=\int_{\mathrm{2}} ^{\mathrm{4}} \left(\frac{\mathrm{4}}{\mathrm{2}{x}−\mathrm{3}}−\frac{\mathrm{3}}{\mathrm{3}{x}−\mathrm{2}}\right){dx} \\ $$$$=\left[\mathrm{2}{ln}\mid\mathrm{2}{x}−\mathrm{3}\mid−{ln}\mid\mathrm{3}{x}−\mathrm{2}\mid\right]_{\mathrm{2}} ^{\mathrm{4}} =\mathrm{2}{ln}\left(\mathrm{5}\right)−{ln}\left(\mathrm{10}\right)+{ln}\left(\mathrm{4}\right) \\ $$$$=\mathrm{2}{ln}\left(\mathrm{5}\right)−{ln}\left(\mathrm{2}\right)−{ln}\left(\mathrm{5}\right)+\mathrm{2}{ln}\left(\mathrm{2}\right)\:={ln}\left(\mathrm{5}\right)+{ln}\left(\mathrm{2}\right)={ln}\left(\mathrm{10}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com