Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66309 by mathmax by abdo last updated on 12/Aug/19

calculate  ∫      (dx/((x^2 −1)(√(x^2 +2))))

calculatedx(x21)x2+2

Commented by prof Abdo imad last updated on 15/Aug/19

let I =∫ (dx/((x^2 −1)(√(x^2 +2))))  changement  x=(√2)sh(t) give I =∫   (((√2)ch(t))/((2sh^2 t−1)(√2)ch(t)))dt  =∫    (dt/(2 ((ch(2t)−1)/2)−1)) =∫   (dt/(ch(2t)−2))  =∫    (dt/(((e^(2t)  +e^(−2t) )/2)−2)) =∫    ((2dt)/(e^(2t)  +e^(−2t) −4))  =_(e^(2t) =u)     ∫    (2/(u+u^(−1) −4)) (du/(2u)) =∫  (du/(u^2  +1−4u))  =∫   (du/(u^2 −4u +1))  u^2 −4u +1=0→Δ^′ =4−1=3 ⇒u_1 =2+(√3)  u_2 =2−(√3) ⇒I =(1/(2(√3)))∫   ((1/(u−u_1 ))−(1/(u−u_2 )))du  =(1/(2(√3)))ln∣((u−u_1 )/(u−u_2 ))∣ +c=(1/(2(√3)))ln∣((u−2−(√3))/(u−2+(√3)))∣ +c  (1/(2(√3)))ln∣((e^(2t) −2−(√3))/(e^(2t) −2+(√3)))∣ +c  but we have  t=argsh((x/(√2))) =ln((x/(√2))+(√(1+(x^2 /2)))) ⇒  e^(2t)  =((x/(√2))+(√(1+(x^2 /2))))^2  ⇒  I =(1/(2(√3)))ln∣((((x+(√(x^2 +2)))/(√2))−2−(√3))/(((x+(√(x^2 +2)))/(√2))−2+(√3)))∣ +c

letI=dx(x21)x2+2changementx=2sh(t)giveI=2ch(t)(2sh2t1)2ch(t)dt=dt2ch(2t)121=dtch(2t)2=dte2t+e2t22=2dte2t+e2t4=e2t=u2u+u14du2u=duu2+14u=duu24u+1u24u+1=0Δ=41=3u1=2+3u2=23I=123(1uu11uu2)du=123lnuu1uu2+c=123lnu23u2+3+c123lne2t23e2t2+3+cbutwehavet=argsh(x2)=ln(x2+1+x22)e2t=(x2+1+x22)2I=123lnx+x2+2223x+x2+222+3+c

Commented by prof Abdo imad last updated on 15/Aug/19

I =(1/(2(√3)))ln∣(((((x+(√(x^2  +2)))/(√2)))^2 −2−(√3))/((((x+(√(x^2  +2)))/(√2)))^2 −2+(√3)))∣ +c

I=123ln(x+x2+22)223(x+x2+22)22+3+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com