Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66325 by mathmax by abdo last updated on 12/Aug/19

calculate ∫_0 ^(π/4)  cos^4 x sin^2 x dx

calculate0π4cos4xsin2xdx

Commented by Prithwish sen last updated on 13/Aug/19

(1/8)∫_0 ^(π/4) (cos2x+1)sin^2 2xdx=(1/8)∫_0 ^(π/4) cos2xsin^2 2xdx+(1/(16))∫_0 ^(π/4) (1−cos4x)dx  =[((sin^3 2x)/(48)) +(x/(16)) −((sin4x)/(64))]_0 ^(π/4) = (1/(48)) + (π/(64 ))  please check.

180π4(cos2x+1)sin22xdx=180π4cos2xsin22xdx+1160π4(1cos4x)dx=[sin32x48+x16sin4x64]0π4=148+π64pleasecheck.

Commented by mathmax by abdo last updated on 13/Aug/19

let I =∫_0 ^(π/4)  cos^4 x sin^2 x ⇒I =∫_0 ^(π/4) (((1+cos(2x))/2))^2 (((1−cos(2x))/2))dx  =(1/8) ∫_0 ^(π/4) (1+2cos(2x)+((1+cos(4x))/2))(1−cos(2x)dx  =(1/(16)) ∫_0 ^(π/4) (2+4cos(2x)+1+cos(4x))(1−cos(2x))dx  =(1/(16)) ∫_0 ^(π/4) (3 +4cos(2x)+cos(4x))(1−cos(2x))dx  16 I =∫_0 ^(π/4) (3+4cos(2x)+cos(4x)−3cos(2x)−4cos^2 (2x)−cos(2x)cos(4x))dx  =((3π)/4) + ∫_0 ^(π/4)  cos(2x)dx +∫_0 ^(π/4)  cos(4x)dx−4 ∫_0 ^(π/4)  ((1+cos(4x))/2)dx  −∫_0 ^(π/4)  cos(2x)cos(4x)dx  =((3π)/4) +(1/2)[sin(2x)]_0 ^(π/4)  +(1/4)[sin(4x)]_0 ^(π/4)  −(π/2) −(1/2)[sin(4x)]_0 ^(π/4)   =((3π)/4)+(1/2)−(π/2) =(π/4) +(1/2)

letI=0π4cos4xsin2xI=0π4(1+cos(2x)2)2(1cos(2x)2)dx=180π4(1+2cos(2x)+1+cos(4x)2)(1cos(2x)dx=1160π4(2+4cos(2x)+1+cos(4x))(1cos(2x))dx=1160π4(3+4cos(2x)+cos(4x))(1cos(2x))dx16I=0π4(3+4cos(2x)+cos(4x)3cos(2x)4cos2(2x)cos(2x)cos(4x))dx=3π4+0π4cos(2x)dx+0π4cos(4x)dx40π41+cos(4x)2dx0π4cos(2x)cos(4x)dx=3π4+12[sin(2x)]0π4+14[sin(4x)]0π4π212[sin(4x)]0π4=3π4+12π2=π4+12

Commented by mathmax by abdo last updated on 13/Aug/19

error at final line   16 I =((3π)/4) +(1/2)−(π/2) −(1/2) ∫_0 ^(π/4)  (cos(6x)+cos(2x))dx  but ∫_0 ^(π/4)  cos(6x)dx +∫_0 ^(π/4)  cos(2x)dx =(1/6)[sin(6x)]_0 ^(π/4)  +(1/2)[sin(2x)]_0 ^(π/4)   =(1/6)sin(((3π)/2))+(1/2) =(1/2)−(1/6) ⇒  16 I =(π/4) +(1/2)−(1/4) +(1/(12)) =(π/4) +(1/4)+(1/(12)) =(π/4) +(1/3) ⇒  I =(π/(64)) +(1/(48)) .

erroratfinalline16I=3π4+12π2120π4(cos(6x)+cos(2x))dxbut0π4cos(6x)dx+0π4cos(2x)dx=16[sin(6x)]0π4+12[sin(2x)]0π4=16sin(3π2)+12=121616I=π4+1214+112=π4+14+112=π4+13I=π64+148.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com