Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66330 by mathmax by abdo last updated on 12/Aug/19

let I_n =∫_0 ^1  x^n  e^(−x)  dx    with n integr natural  1) calculate I_0  , I_1  and I_2   2)find arelation between I_n  and I_n   3) find I_n  interms of n.

$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} \:{dx}\:\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{I}_{\mathrm{0}} \:,\:{I}_{\mathrm{1}} \:{and}\:{I}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:{arelation}\:{between}\:{I}_{{n}} \:{and}\:{I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{I}_{{n}} \:{interms}\:{of}\:{n}. \\ $$

Commented by mathmax by abdo last updated on 18/Aug/19

1)I_n =∫_0 ^1  x^n  e^(−x)  dx ⇒I_0 =∫_0 ^1  e^(−x) dx =[−e^(−x) ]_0 ^1 =1−e^(−1)   I_1 =∫_0 ^1  x e^(−x) dx =_(by parts) [−xe^(−x) ]_0 ^1  +∫_0 ^1 e^(−x) dx=−e^(−1) + 1−e^(−1)   =1−2e^(−1)   I_2 =∫_0 ^1  x^2  e^(−x) dx =_(by psrts)   [−x^2 e^(−x) ]_0 ^1  +∫_0 ^1 2x e^(−x) dx  =−e^(−1)  +2(1−2e^(−1) ) =2−3e^(−1)    2) by parts u =x^n  and v^′  =e^(−x)  ⇒I_n =[−x^n  e^(−x) ]_0 ^1 +∫_0 ^1 nx^(n−1)  e^(−x) dx  =−e^(−1)  +n∫_0 ^1  x^(n−1)  e^(−x) dx =n I_(n−1) −(1/e) ⇒I_n =nI_(n−1) −(1/e)  3)let V_n =(I_n /(n!))  we have V_(n+1) −V_n =(I_(n+1) /((n+1)!))−(I_n /(n!))  =(((n+1)I_n −(1/e))/((n+1)!)) −(I_n /(n!)) =(I_n /(n!))−(1/(e(n+1)!))−(I_n /(n!)) =−(1/(e(n+1)!)) ⇒  Σ_(k=0) ^(n−1) (V_(k+1) −V_k ) =−(1/e)Σ_(k=0) ^(n−1)  (1/((k+1)!)) =−(1/e)Σ_(k=1) ^n  (1/(k!)) ⇒  V_n −V_0 =−(1/e)Σ_(k=1) ^n  (1/(k!))  but V_0 =I_0 =1−(1/e) ⇒  V_n =−(1/e)(Σ_(k=1) ^n  (1/(k!))+1)+1 =1−(1/e)Σ_(k=0) ^n  (1/(k!)) ⇒  I_n =n!{1−(1/e)Σ_(k=0) ^n  (1/(k!))}  (n≥1)

$$\left.\mathrm{1}\right){I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \:{e}^{−{x}} \:{dx}\:\Rightarrow{I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} {dx}\:=\left[−{e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{1}−{e}^{−\mathrm{1}} \\ $$$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:{e}^{−{x}} {dx}\:=_{{by}\:{parts}} \left[−{xe}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{−{x}} {dx}=−{e}^{−\mathrm{1}} +\:\mathrm{1}−{e}^{−\mathrm{1}} \\ $$$$=\mathrm{1}−\mathrm{2}{e}^{−\mathrm{1}} \\ $$$${I}_{\mathrm{2}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}} \:{e}^{−{x}} {dx}\:=_{{by}\:{psrts}} \:\:\left[−{x}^{\mathrm{2}} {e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}{x}\:{e}^{−{x}} {dx} \\ $$$$=−{e}^{−\mathrm{1}} \:+\mathrm{2}\left(\mathrm{1}−\mathrm{2}{e}^{−\mathrm{1}} \right)\:=\mathrm{2}−\mathrm{3}{e}^{−\mathrm{1}} \: \\ $$$$\left.\mathrm{2}\right)\:{by}\:{parts}\:{u}\:={x}^{{n}} \:{and}\:{v}^{'} \:={e}^{−{x}} \:\Rightarrow{I}_{{n}} =\left[−{x}^{{n}} \:{e}^{−{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} {nx}^{{n}−\mathrm{1}} \:{e}^{−{x}} {dx} \\ $$$$=−{e}^{−\mathrm{1}} \:+{n}\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}−\mathrm{1}} \:{e}^{−{x}} {dx}\:={n}\:{I}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{{e}}\:\Rightarrow{I}_{{n}} ={nI}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{{e}} \\ $$$$\left.\mathrm{3}\right){let}\:{V}_{{n}} =\frac{{I}_{{n}} }{{n}!}\:\:{we}\:{have}\:{V}_{{n}+\mathrm{1}} −{V}_{{n}} =\frac{{I}_{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)!}−\frac{{I}_{{n}} }{{n}!} \\ $$$$=\frac{\left({n}+\mathrm{1}\right){I}_{{n}} −\frac{\mathrm{1}}{{e}}}{\left({n}+\mathrm{1}\right)!}\:−\frac{{I}_{{n}} }{{n}!}\:=\frac{{I}_{{n}} }{{n}!}−\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}−\frac{{I}_{{n}} }{{n}!}\:=−\frac{\mathrm{1}}{{e}\left({n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({V}_{{k}+\mathrm{1}} −{V}_{{k}} \right)\:=−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\:=−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\Rightarrow \\ $$$${V}_{{n}} −{V}_{\mathrm{0}} =−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\:{but}\:{V}_{\mathrm{0}} ={I}_{\mathrm{0}} =\mathrm{1}−\frac{\mathrm{1}}{{e}}\:\Rightarrow \\ $$$${V}_{{n}} =−\frac{\mathrm{1}}{{e}}\left(\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}+\mathrm{1}\right)+\mathrm{1}\:=\mathrm{1}−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\:\Rightarrow \\ $$$${I}_{{n}} ={n}!\left\{\mathrm{1}−\frac{\mathrm{1}}{{e}}\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{{k}!}\right\}\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com