All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66346 by mathmax by abdo last updated on 12/Aug/19
find∫0∞t7t16+1dt
Commented by mathmax by abdo last updated on 13/Aug/19
letf(y)=∫0yt7t16+1dt⇒f(y)=18∫0y8t7(t8)2+1dt=18[arctan(t8)]0y=18arctan(y8)⇒∫0∞t7t16+1dt=limy→+∞f(y)=18π2=π16anotherwaychangementt=u116give∫0∞t71+t16dt=116∫0∞u7161+uu116−1du=116∫0∞u12−11+udu=116πsin(π2)=π16byusingtheresult∫0∞ta−11+tdt=πsin(πa)(0<a<1)
Commented by Prithwish sen last updated on 13/Aug/19
nicesir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com