Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66351 by mathmax by abdo last updated on 12/Aug/19

let I_n =∫_0 ^∞   (e^(nt) /((1+e^t )^(n+1) ))dt     (n from N^★ )  )prove the existence of I_n   2)find lim_(n→+∞)    I_n

$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }{dt}\:\:\:\:\:\left({n}\:{from}\:{N}^{\bigstar} \right) \\ $$$$\left.\right){prove}\:{the}\:{existence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:{I}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 15/Aug/19

∀A>0 thefunction t→(e^(nt) /((1+e^t )^(n+1) )) is continue on [0,A] so  integrable  let see what happenat +∞ we have   lim_(t→+∞)    t^2  (e^(nt) /((1+e^t )^(n+1) )) =lim_(t→+∞) t^2  (e^(nt) /e^((n+1)t) ) =lim_(n→+∞) t^2 e^(−t) =0  so I_n is convergent  2)changement e^(nt) =x give nt=ln(x) ⇒  I_n =∫_1 ^(+∞)     (x/((1+x^(1/n) )^(n+1) )) (dx/(nx)) =∫_1 ^(+∞)     (dx/((1+x^(1/n) )^(n+1) ))  =∫_1 ^(+∞)  e^(−(n+1)ln(1+x^(1/n) )) dx =∫_R  f_n (x)dx with  f_n (x)=e^(−(n+1)ln(1+x^(1/n) )) χ_([1,+∞[)  (x)  we have f_n )continues  and f_n →^(cs)  0   ⇒lim_(n→+∞)  I_n =∫_R lim_(n→+∞) f_n (x)dx =0

$$\forall{A}>\mathrm{0}\:{thefunction}\:{t}\rightarrow\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }\:{is}\:{continue}\:{on}\:\left[\mathrm{0},{A}\right]\:{so} \\ $$$${integrable}\:\:{let}\:{see}\:{what}\:{happenat}\:+\infty\:{we}\:{have}\: \\ $$$${lim}_{{t}\rightarrow+\infty} \:\:\:{t}^{\mathrm{2}} \:\frac{{e}^{{nt}} }{\left(\mathrm{1}+{e}^{{t}} \right)^{{n}+\mathrm{1}} }\:={lim}_{{t}\rightarrow+\infty} {t}^{\mathrm{2}} \:\frac{{e}^{{nt}} }{{e}^{\left({n}+\mathrm{1}\right){t}} }\:={lim}_{{n}\rightarrow+\infty} {t}^{\mathrm{2}} {e}^{−{t}} =\mathrm{0} \\ $$$${so}\:{I}_{{n}} {is}\:{convergent} \\ $$$$\left.\mathrm{2}\right){changement}\:{e}^{{nt}} ={x}\:{give}\:{nt}={ln}\left({x}\right)\:\Rightarrow \\ $$$${I}_{{n}} =\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{x}}{\left(\mathrm{1}+{x}^{\frac{\mathrm{1}}{{n}}} \right)^{{n}+\mathrm{1}} }\:\frac{{dx}}{{nx}}\:=\int_{\mathrm{1}} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}^{\frac{\mathrm{1}}{{n}}} \right)^{{n}+\mathrm{1}} } \\ $$$$=\int_{\mathrm{1}} ^{+\infty} \:{e}^{−\left({n}+\mathrm{1}\right){ln}\left(\mathrm{1}+{x}^{\frac{\mathrm{1}}{{n}}} \right)} {dx}\:=\int_{{R}} \:{f}_{{n}} \left({x}\right){dx}\:{with} \\ $$$$\left.{f}_{{n}} \left({x}\right)={e}^{−\left({n}+\mathrm{1}\right){ln}\left(\mathrm{1}+{x}^{\frac{\mathrm{1}}{{n}}} \right)} \chi_{\left[\mathrm{1},+\infty\left[\right.\right.} \:\left({x}\right)\:\:{we}\:{have}\:{f}_{{n}} \right){continues} \\ $$$${and}\:{f}_{{n}} \rightarrow^{{cs}} \:\mathrm{0}\:\:\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} =\int_{{R}} {lim}_{{n}\rightarrow+\infty} {f}_{{n}} \left({x}\right){dx}\:=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com