Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66420 by Rio Michael last updated on 14/Aug/19

solve the differential equation   2(d^2 y/dx^2 ) + (dy/dx) − e^(−x)  = 4

$${solve}\:{the}\:{differential}\:{equation} \\ $$$$\:\mathrm{2}\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\frac{{dy}}{{dx}}\:−\:{e}^{−{x}} \:=\:\mathrm{4} \\ $$

Commented by mathmax by abdo last updated on 14/Aug/19

2y^(′′) +y^′  =4 +e^(−x)    let y^′  =z  so (e) ⇒2z^′  +z =4+e^(−x)    (e^′ )  (he) →2z^′  +z =0 ⇒2z^′  =−z ⇒(z^′ /z)=−(1/2) ⇒ln∣z∣=−(x/2) +λ ⇒  z(x)= K e^(−(x/2))     let use mvc method   z^′  =K^′  e^(−(x/2))  −(K/2)e^(−(x/2))   (e^′ )⇒2K^′  e^(−(x/2))  −K e^(−(x/2))  +K e^(−(x/2))  =4+e^(−x)  ⇒2K^′  e^(−(x/2))  =4+e^(−x ) ⇒  K^′  =(1/2) e^(x/2) (4+e^(−x) ) =2 e^(x/2)  +(1/2) e^(−(x/2))   ⇒  K(x) =∫  (2e^(x/2)  +(1/2)e^(−(x/2)) )dx+c =4 e^(x/2)   −e^(−(x/2))   +c ⇒  z(x) =e^(−(x/2)) {4e^(x/2)  −e^(−(x/2))  +c} =4 −e^(−x)  +c e^(−(x/2))   y^′  =z ⇒ y^(′ ) =4−e^(−x)  +c e^(−(x/2))  ⇒y(x) =∫ (4−e^(−x)  +c e^(−(x/2)) )dx +λ ⇒  y(x)=4x +e^(−x)  −2c e^(−(x/2))  +λ

$$\mathrm{2}{y}^{''} +{y}^{'} \:=\mathrm{4}\:+{e}^{−{x}} \:\:\:{let}\:{y}^{'} \:={z}\:\:{so}\:\left({e}\right)\:\Rightarrow\mathrm{2}{z}^{'} \:+{z}\:=\mathrm{4}+{e}^{−{x}} \:\:\:\left({e}^{'} \right) \\ $$$$\left({he}\right)\:\rightarrow\mathrm{2}{z}^{'} \:+{z}\:=\mathrm{0}\:\Rightarrow\mathrm{2}{z}^{'} \:=−{z}\:\Rightarrow\frac{{z}^{'} }{{z}}=−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{ln}\mid{z}\mid=−\frac{{x}}{\mathrm{2}}\:+\lambda\:\Rightarrow \\ $$$${z}\left({x}\right)=\:{K}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:\:\:\:{let}\:{use}\:{mvc}\:{method}\: \\ $$$${z}^{'} \:={K}^{'} \:{e}^{−\frac{{x}}{\mathrm{2}}} \:−\frac{{K}}{\mathrm{2}}{e}^{−\frac{{x}}{\mathrm{2}}} \\ $$$$\left({e}^{'} \right)\Rightarrow\mathrm{2}{K}^{'} \:{e}^{−\frac{{x}}{\mathrm{2}}} \:−{K}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:+{K}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:=\mathrm{4}+{e}^{−{x}} \:\Rightarrow\mathrm{2}{K}^{'} \:{e}^{−\frac{{x}}{\mathrm{2}}} \:=\mathrm{4}+{e}^{−{x}\:} \Rightarrow \\ $$$${K}^{'} \:=\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{\frac{{x}}{\mathrm{2}}} \left(\mathrm{4}+{e}^{−{x}} \right)\:=\mathrm{2}\:{e}^{\frac{{x}}{\mathrm{2}}} \:+\frac{\mathrm{1}}{\mathrm{2}}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:\:\Rightarrow \\ $$$${K}\left({x}\right)\:=\int\:\:\left(\mathrm{2}{e}^{\frac{{x}}{\mathrm{2}}} \:+\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{{x}}{\mathrm{2}}} \right){dx}+{c}\:=\mathrm{4}\:{e}^{\frac{{x}}{\mathrm{2}}} \:\:−{e}^{−\frac{{x}}{\mathrm{2}}} \:\:+{c}\:\Rightarrow \\ $$$${z}\left({x}\right)\:={e}^{−\frac{{x}}{\mathrm{2}}} \left\{\mathrm{4}{e}^{\frac{{x}}{\mathrm{2}}} \:−{e}^{−\frac{{x}}{\mathrm{2}}} \:+{c}\right\}\:=\mathrm{4}\:−{e}^{−{x}} \:+{c}\:{e}^{−\frac{{x}}{\mathrm{2}}} \\ $$$${y}^{'} \:={z}\:\Rightarrow\:{y}^{'\:} =\mathrm{4}−{e}^{−{x}} \:+{c}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:\Rightarrow{y}\left({x}\right)\:=\int\:\left(\mathrm{4}−{e}^{−{x}} \:+{c}\:{e}^{−\frac{{x}}{\mathrm{2}}} \right){dx}\:+\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)=\mathrm{4}{x}\:+{e}^{−{x}} \:−\mathrm{2}{c}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:+\lambda \\ $$$$ \\ $$

Commented by Rio Michael last updated on 15/Aug/19

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mathmax by abdo last updated on 17/Aug/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com