All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66459 by mathmax by abdo last updated on 15/Aug/19
1)calculatebyresidusmethod∫0∞dx(1+x2)32)findthevalueof∫011+x4(1+x2)3dx
Commented by mathmax by abdo last updated on 17/Aug/19
1)letA=∫0∞dx(1+x2)3⇒2A=∫−∞+∞dx(x2+1)3letW(z)=1(z2+1)3⇒W(z)=1(z−i)3(z+i)3sothepolesofWare+−i(triples)residustheoremegive∫−∞+∞W(z)dz=2iπRes(W,i)Res(W,i)=limz→i1(3−1)!{(z−i)3W(z)}(2)=limz→i12{(z+i)−3}(2)=limz→i12{−3(z+i)−4}(1)=limz→i12{12(z+i)−5}=6(2i)−5=6(2i)5=625i=316i⇒∫−∞+∞W(z)dz=2iπ×316i=3π8⇒A=3π162)wehave∫0∞dx(1+x2)3=∫01dx(1+x2)3+∫1+∞dx(1+x2)3and∫1+∞dx(1+x2)3=x=1t−∫01−(1+1t2)3dtt2=∫0∞t6t2(1+t2)3dt=∫0∞t4(1+t2)3dt⇒∫0∞dx(1+x2)3=∫01dx(1+x2)3+∫0∞x4(1+x2)3dx=∫0∞1+x4(1+x2)3dx⇒∫0∞1+x4(1+x2)3=3π16.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com