Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66459 by mathmax by abdo last updated on 15/Aug/19

1) calculate by residus method  ∫_0 ^∞   (dx/((1+x^2 )^3 ))  2) find the value of ∫_0 ^1  ((1+x^4 )/((1+x^2 )^3 ))dx

1)calculatebyresidusmethod0dx(1+x2)32)findthevalueof011+x4(1+x2)3dx

Commented by mathmax by abdo last updated on 17/Aug/19

1)let A =∫_0 ^∞  (dx/((1+x^2 )^3 )) ⇒2A =∫_(−∞) ^(+∞)  (dx/((x^2  +1)^3 ))  let W(z)=(1/((z^2  +1)^3 )) ⇒W(z)=(1/((z−i)^3 (z+i)^3 )) so the poles of W are  +^− i  (triples)  residus theoreme give ∫_(−∞) ^(+∞) W(z)dz=2iπRes(W,i)  Res(W,i)=lim_(z→i) (1/((3−1)!)){(z−i)^3 W(z)}^((2))   =lim_(z→i)    (1/2){(z+i)^(−3) }^((2))  =lim_(z→i)  (1/2){−3(z+i)^(−4) }^((1))   =lim_(z→i)  (1/2){12(z+i)^(−5) } =6(2i)^(−5)  =(6/((2i)^5 )) =(6/(2^5 i)) =(3/(16i)) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ×(3/(16i)) =((3π)/8) ⇒A =((3π)/(16))  2)we have ∫_0 ^∞    (dx/((1+x^2 )^3 )) =∫_0 ^1  (dx/((1+x^2 )^3 )) +∫_1 ^(+∞)   (dx/((1+x^2 )^3 ))  and  ∫_1 ^(+∞)   (dx/((1+x^2 )^3 )) =_(x=(1/t))     −∫_0 ^1     (−/((1+(1/t^2 ))^3 ))(dt/t^2 ) =∫_0 ^∞   (t^6 /(t^2 (1+t^2 )^3 ))dt  =∫_0 ^∞ (t^4 /((1+t^2 )^3 ))dt ⇒∫_0 ^∞    (dx/((1+x^2 )^3 )) =∫_0 ^1  (dx/((1+x^2 )^3 )) +∫_0 ^∞   (x^4 /((1+x^2 )^3 ))dx  =∫_0 ^∞  ((1+x^4 )/((1+x^2 )^3 ))dx   ⇒∫_0 ^∞  ((1+x^4 )/((1+x^2 )^3 ))=((3π)/(16)) .

1)letA=0dx(1+x2)32A=+dx(x2+1)3letW(z)=1(z2+1)3W(z)=1(zi)3(z+i)3sothepolesofWare+i(triples)residustheoremegive+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(31)!{(zi)3W(z)}(2)=limzi12{(z+i)3}(2)=limzi12{3(z+i)4}(1)=limzi12{12(z+i)5}=6(2i)5=6(2i)5=625i=316i+W(z)dz=2iπ×316i=3π8A=3π162)wehave0dx(1+x2)3=01dx(1+x2)3+1+dx(1+x2)3and1+dx(1+x2)3=x=1t01(1+1t2)3dtt2=0t6t2(1+t2)3dt=0t4(1+t2)3dt0dx(1+x2)3=01dx(1+x2)3+0x4(1+x2)3dx=01+x4(1+x2)3dx01+x4(1+x2)3=3π16.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com