Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 66462 by mathmax by abdo last updated on 15/Aug/19

1)simplify S_n (x)=Σ_(k=0) ^n  C_n ^k  cos^k (x)cos(kx)  2)find the value of A_n =Σ_(k=0) ^n  C_n ^k  cos^k ((π/n))cos(((kπ)/n))

1)simplifySn(x)=k=0nCnkcosk(x)cos(kx)2)findthevalueofAn=k=0nCnkcosk(πn)cos(kπn)

Commented by mathmax by abdo last updated on 21/Aug/19

1) we have S_n (x)=Re( Σ_(k=0) ^n  C_n ^k  cos^k x e^(ikx) ) but  Σ_(k=0) ^n  C_n ^k  cos^k xe^(ikx)  =Σ_(k=0) ^n  C_n ^k (e^(ix) cosx)^k  ×1^(n−k) =(1+e^(ix) cosx)^n   =(1+cosx{cosx +isinx})^n  =(1+cos^2 x +isinx cosx)^n   let z =1+cos^2 x +isinx cosx ⇒∣z∣=(√((1+cos^2 x)^2 +sin^2 x cos^2 x))  =(√(1+cos^4 x +2cos^2 x +(1−cos^2 x)cos^2 x))  =(√(1+cos^4 x +2cos^2 x+cos^2 x−cos^4 x))=⇒(√(1+3cos^2 x)) ⇒  z =(√(1+3cos^2 x))e^(i arctan(((sinx cosx)/(1+cos^2 x))))   we have  ((sinxcosx)/(1+cos^2 x)) =((sin(2x))/(2(1+((1+cos(2x))/2)))) =((sin(2x))/(2+1+cos(2x))) =((sin(2x))/(3+cos(2x)))  and 1+cos^2 x =1+((1+cos(2x))/2) =((3+cos(2x))/2) ⇒  z =(((3+cos(2x))/2))^(1/2)  e^(i arctan(((sin(2x))/(3+cos(2x)))))  ⇒  z^n  =(((3+cos(2x))/2))^(n/2)  e^(in arctan(((sin(2x))/(3+cos(2x)))))  ⇒  S_n (x) =Re(z^n ) =(((3+cos(2x))/2))^(n/2)  cos(n arctan(((sin(2x))/(3+cos(2x)))))  2) we have A_n =Σ_(k=0) ^n   C_n ^k  cos^k ((π/n)) cos(((kπ)/n))  =S_n ((π/n)) =(((3+cos(((2π)/n)))/2))^(n/2)  cos(narctan(((sin(((2π)/n)))/(3+cos(((2π)/n)))))).

1)wehaveSn(x)=Re(k=0nCnkcoskxeikx)butk=0nCnkcoskxeikx=k=0nCnk(eixcosx)k×1nk=(1+eixcosx)n=(1+cosx{cosx+isinx})n=(1+cos2x+isinxcosx)nletz=1+cos2x+isinxcosx⇒∣z∣=(1+cos2x)2+sin2xcos2x=1+cos4x+2cos2x+(1cos2x)cos2x=1+cos4x+2cos2x+cos2xcos4x=⇒1+3cos2xz=1+3cos2xeiarctan(sinxcosx1+cos2x)wehavesinxcosx1+cos2x=sin(2x)2(1+1+cos(2x)2)=sin(2x)2+1+cos(2x)=sin(2x)3+cos(2x)and1+cos2x=1+1+cos(2x)2=3+cos(2x)2z=(3+cos(2x)2)12eiarctan(sin(2x)3+cos(2x))zn=(3+cos(2x)2)n2einarctan(sin(2x)3+cos(2x))Sn(x)=Re(zn)=(3+cos(2x)2)n2cos(narctan(sin(2x)3+cos(2x)))2)wehaveAn=k=0nCnkcosk(πn)cos(kπn)=Sn(πn)=(3+cos(2πn)2)n2cos(narctan(sin(2πn)3+cos(2πn))).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com