All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66464 by mathmax by abdo last updated on 15/Aug/19
calculate∫0∞dx(x2+3)(x2+8)2
Commented by mathmax by abdo last updated on 16/Aug/19
letI=∫0∞dx(x2+3)(x2+8)2⇒2I=∫−∞+∞dx(x2+3)(x2+8)2letφ(z)=1(z2+3)(z2+8)2polesofφ?φ(z)=1(z−i3)(z+i3)(z−i22)2(z+i22)2thepolesofφare+−i3and+−2i2residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,i3)+Res(φ,2i2)}Res(φ,i3)=limz→i3(z−i3)φ(z)=12i3(−3+8)2=150i3Res(φ,2i2)=limz→2i21(2−1)!{(z−2i2)2φ(z)}(1)=limz→2i2{1(z2+3)(z+2i2)2}(1)=limz→2i2−2z(z+2i2)2+2(z+2i2)(z2+3)(z2+3)2(z+2i2)2=limz→2i2−2z(z+2i2)+2(z2+3)(z2+3)2(z+2i2)=−4i2(4i2)+2(−8+3)(−8+3)2(4i2)=−−32−10100i2=42100i2=2150i2∫−∞+∞φ(z)dz=2iπ{150i3+2150i2}=π253+21π252=2I
Terms of Service
Privacy Policy
Contact: info@tinkutara.com