Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66464 by mathmax by abdo last updated on 15/Aug/19

calculate ∫_0 ^∞      (dx/((x^2 +3)(x^2 +8)^2 ))

calculate0dx(x2+3)(x2+8)2

Commented by mathmax by abdo last updated on 16/Aug/19

let I =∫_0 ^∞   (dx/((x^2  +3)(x^2  +8)^2 )) ⇒2I =∫_(−∞) ^(+∞)  (dx/((x^2  +3)(x^2 +8)^2 ))  let ϕ(z)=(1/((z^2  +3)(z^2  +8)^2 ))  poles of ϕ?  ϕ(z) =(1/((z−i(√3))(z+i(√3))(z−i2(√2))^2 (z+i2(√2))^2 ))  the poles of ϕ are  +^− i(√3)and +^− 2i(√2)   residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,i(√3))+Res(ϕ,2i(√2))}  Res(ϕ,i(√3)) =lim_(z→i(√3))    (z−i(√3))ϕ(z) =(1/(2i(√3)(−3+8)^2 )) =(1/(50i(√3)))  Res(ϕ,2i(√2)) =lim_(z→2i(√2))     (1/((2−1)!)){(z−2i(√2))^2 ϕ(z)}^((1))   =lim_(z→2i(√2))      {(1/((z^2  +3)(z+2i(√2))^2 ))}^((1))   =lim_(z→2i(√2))    −((2z(z+2i(√2))^2  +2(z+2i(√2))(z^2  +3))/((z^2 +3)^2 (z+2i(√2))^2 ))  =lim_(z→2i(√2))     −((2z(z+2i(√2))+2(z^2  +3))/((z^2  +3)^2 (z+2i(√2))))  =−((4i(√2)(4i(√2))+2(−8+3))/((−8+3)^2 (4i(√2)))) =−((−32−10)/(100i(√2))) =((42)/(100i(√2))) =((21)/(50i(√2)))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ{(1/(50i(√3)))+((21)/(50i(√2)))} =(π/(25(√3))) +((21π)/(25(√2))) =2I

letI=0dx(x2+3)(x2+8)22I=+dx(x2+3)(x2+8)2letφ(z)=1(z2+3)(z2+8)2polesofφ?φ(z)=1(zi3)(z+i3)(zi22)2(z+i22)2thepolesofφare+i3and+2i2residustheoremgive+φ(z)dz=2iπ{Res(φ,i3)+Res(φ,2i2)}Res(φ,i3)=limzi3(zi3)φ(z)=12i3(3+8)2=150i3Res(φ,2i2)=limz2i21(21)!{(z2i2)2φ(z)}(1)=limz2i2{1(z2+3)(z+2i2)2}(1)=limz2i22z(z+2i2)2+2(z+2i2)(z2+3)(z2+3)2(z+2i2)2=limz2i22z(z+2i2)+2(z2+3)(z2+3)2(z+2i2)=4i2(4i2)+2(8+3)(8+3)2(4i2)=3210100i2=42100i2=2150i2+φ(z)dz=2iπ{150i3+2150i2}=π253+21π252=2I

Terms of Service

Privacy Policy

Contact: info@tinkutara.com