All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66465 by mathmax by abdo last updated on 15/Aug/19
calculate∫0∞dx(x2+2i)(x2+4j)withi=eiπ2andj=ei2π3
Commented by mathmax by abdo last updated on 16/Aug/19
letA=∫0∞dx(x2+2i)(x2+4j)⇒2A=∫−∞+∞dx(x2+2i)(x2+4j)letφ(z)=1(z2+2i)(z2+4j)polesofφ?wehaveφ(z)=1(z2−(−2i)(z2−(−4j))=1(z−−2i)(z+−2i)(z−2−j)(z+2−j)−j=eiπ.ei2π3=ei(π+2π3)=ei(5π3)=e−iπ3⇒−j=e−iπ6⇒φ(z)=1(z−2e−iπ4)(z+2e−iπ4)(z−2e−iπ6)(z+2e−iπ6)thepolesofφare+−2e−iπ4and+−2e−iπ6residustbeoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,−2e−iπ4)+Res(φ,−2e−iπ6)}Res(φ,−2e−iπ4)=1−22e−iπ4(2e−iπ2+4j)=−eiπ442(−i+4j)Res(φ,−2e−iπ6)=1−4e−iπ6(e−iπ3+2i)=−eiπ64(2i+e−iπ3)⇒∫−∞+∞φ(z)dz=−iπ2{eiπ42(−i+4j)+eiπ62i+e−iπ3}=2A
Terms of Service
Privacy Policy
Contact: info@tinkutara.com