Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66465 by mathmax by abdo last updated on 15/Aug/19

calculate ∫_0 ^∞     (dx/((x^2 +2i)( x^2  +4j)))   with i=e^((iπ)/2)  and j=e^(i((2π)/3))

calculate0dx(x2+2i)(x2+4j)withi=eiπ2andj=ei2π3

Commented by mathmax by abdo last updated on 16/Aug/19

let A =∫_0 ^∞    (dx/((x^2  +2i)(x^2  +4j))) ⇒2A =∫_(−∞) ^(+∞)  (dx/((x^2  +2i)(x^2  +4j)))  let ϕ(z) =(1/((z^2  +2i)(z^2  +4j)))  poles of ϕ?  we have ϕ(z) =(1/((z^2 −(−2i)(z^2 −(−4j))))   =(1/((z−(√(−2i)))(z+(√(−2i)))(z−2(√(−j)))(z+2(√(−j)))))  −j =e^(iπ) .e^(i((2π)/3))  =e^(i(π+((2π)/3)))  =e^(i(((5π)/3)))  =e^(−((iπ)/3))  ⇒(√(−j))=e^(−((iπ)/6))  ⇒  ϕ(z) =(1/((z−(√2)e^(−((iπ)/4)) )(z+(√2)e^(−((iπ)/4)) )(z−2e^(−((iπ)/6)) )(z+2 e^(−((iπ)/6)) )))  the poles of ϕ are +^− (√2)e^(−((iπ)/4))  and +^− 2e^(−((iπ)/6))  residus tbeorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,−(√2)e^(−((iπ)/4)) )+Res(ϕ,−2e^(−((iπ)/6)) )}  Res(ϕ,−(√2)e^(−((iπ)/4)) ) =(1/(−2(√2)e^(−((iπ)/4)) (2 e^(−((iπ)/2))  +4j))) =−(e^((iπ)/4) /(4(√2)(−i +4j)))  Res(ϕ,−2e^(−((iπ)/6)) ) =(1/(−4e^(−((iπ)/6)) (e^(−((iπ)/3))  +2i))) =−(e^(i(π/6)) /(4(2i +e^(−((iπ)/3)) ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =−((iπ)/2){  (e^((iπ)/4) /((√2)(−i+4j))) +(e^((iπ)/6) /(2i+e^(−((iπ)/3)) ))} =2A

letA=0dx(x2+2i)(x2+4j)2A=+dx(x2+2i)(x2+4j)letφ(z)=1(z2+2i)(z2+4j)polesofφ?wehaveφ(z)=1(z2(2i)(z2(4j))=1(z2i)(z+2i)(z2j)(z+2j)j=eiπ.ei2π3=ei(π+2π3)=ei(5π3)=eiπ3j=eiπ6φ(z)=1(z2eiπ4)(z+2eiπ4)(z2eiπ6)(z+2eiπ6)thepolesofφare+2eiπ4and+2eiπ6residustbeoremgive+φ(z)dz=2iπ{Res(φ,2eiπ4)+Res(φ,2eiπ6)}Res(φ,2eiπ4)=122eiπ4(2eiπ2+4j)=eiπ442(i+4j)Res(φ,2eiπ6)=14eiπ6(eiπ3+2i)=eiπ64(2i+eiπ3)+φ(z)dz=iπ2{eiπ42(i+4j)+eiπ62i+eiπ3}=2A

Terms of Service

Privacy Policy

Contact: info@tinkutara.com