Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66466 by mathmax by abdo last updated on 15/Aug/19

find  f(a,b) =∫_0 ^∞     ((cos(ax)cos(bx))/((x^2 +a^2 )(x^2  +b^2 )))dx  with a>0 and b>0  2)calculate ∫_0 ^∞    ((cos(x)cos(2x))/((x^2  +1)(x^2  +4)))dx

findf(a,b)=0cos(ax)cos(bx)(x2+a2)(x2+b2)dxwitha>0andb>0 2)calculate0cos(x)cos(2x)(x2+1)(x2+4)dx

Commented bymathmax by abdo last updated on 17/Aug/19

1) we have f(a,b) =(1/2)∫_0 ^∞   ((cos(a+b)x+cos(a−b)x)/((x^2  +a^2 )(x^2  +b^(2)) ))dx  =(1/4)∫_(−∞) ^(+∞)  ((cos(a+b)x)/((x^2  +a^2 )(x^2  +b^2 )))dx +(1/4)∫_(−∞) ^(+∞)  ((cos(a−b)x)/((x^2  +a^2 )(x^2  +b^2 )))dx ⇒  4f(,b) =H +K  H =Re( ∫_(−∞) ^(+∞)  (e^(i(a+b)x) /((x^2  +a^2 )(x^2  +b^2 )))dx)let ϕ(z)=(e^(i(a+b)z) /((x^2  +a^2 )(x^2  +b^2 )))  ϕ(z) =(e^(i(a+b)z) /((x−ia)(x+ia)(x−ib)(x+ib))) so the poles of ϕ are   +^− ia and +^− ib  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {Res(ϕ,ia)+Res(ϕ,ib)}  Res(ϕ,ia) =(e^(i(a+b)ia) /((2ia)(b^2 −a^2 )))          (ifa≠b)  =(e^(−a(a+b)) /((2ia)(b^2 −a^2 )))  Res(ϕ,ib) = (e^(i(a+b)ib) /((2ib)(a^2 −b^2 ))) =(e^(−b(a+b)) /(2ib(a^2 −b^2 ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{  (e^(−a^2 −ab) /(2ia(b^2 −a^2 ))) +(e^(−b^2 −ab) /(2ib(a^2 −b^2 )))}  =(π/(a^2 −b^2 )){  (e^(−b^2 −ab) /b)−(e^(−a^2 −ab) /a)} =H  (the integral is real) for k  we change b by −b we get  K =(π/(a^2 −b^2 )){(e^(−b^2 +ab) /(−b))−(e^(−a^2 +ab) /a)} ⇒  f(a,b) =(π/(4(a^2 −b^2 ))){ ((e^(−b^2 −ab) −e^(−b^2 +ab) )/b)−((e^(−a^2 −ab) +e^(−a^2  +ab) )/a)}  and we must study the case a=b...  2)∫_0 ^∞    ((cosx cos(2x))/((x^2  +1)(x^2 +4)))dx =f(1,2)  =(π/(4(−3))){  ((e^(−6)  −e^(−2) )/2) −((e^(−3)  +e^1 )/1)} =−(π/(12)){((e^(−6) −e^(−2) −2e^(−3) −2e)/2)}  =(π/(24)){2e^(−3)  +e^(−2) +2e −e^(−6) } .

1)wehavef(a,b)=120cos(a+b)x+cos(ab)x(x2+a2)(x2+b2)dx =14+cos(a+b)x(x2+a2)(x2+b2)dx+14+cos(ab)x(x2+a2)(x2+b2)dx 4f(,b)=H+K H=Re(+ei(a+b)x(x2+a2)(x2+b2)dx)letφ(z)=ei(a+b)z(x2+a2)(x2+b2) φ(z)=ei(a+b)z(xia)(x+ia)(xib)(x+ib)sothepolesofφare +iaand+ibresidustheoremgive +φ(z)dz=2iπ{Res(φ,ia)+Res(φ,ib)} Res(φ,ia)=ei(a+b)ia(2ia)(b2a2)(ifab) =ea(a+b)(2ia)(b2a2) Res(φ,ib)=ei(a+b)ib(2ib)(a2b2)=eb(a+b)2ib(a2b2) +φ(z)dz=2iπ{ea2ab2ia(b2a2)+eb2ab2ib(a2b2)} =πa2b2{eb2abbea2aba}=H(theintegralisreal)fork wechangebbybwegetK=πa2b2{eb2+abbea2+aba} f(a,b)=π4(a2b2){eb2abeb2+abbea2ab+ea2+aba} andwemuststudythecasea=b... 2)0cosxcos(2x)(x2+1)(x2+4)dx=f(1,2) =π4(3){e6e22e3+e11}=π12{e6e22e32e2} =π24{2e3+e2+2ee6}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com