Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66513 by Rio Michael last updated on 16/Aug/19

when finding  ∫_0 ^2 (2x +4)^5 dx   must we change limits?

whenfinding02(2x+4)5dxmustwechangelimits?

Commented by kaivan.ahmadi last updated on 17/Aug/19

yes.since we must change the parameter  t=2x+4⇒dt=2dx     { ((x=0⇒t=4)),((x=2⇒t=8)) :}  (1/2)∫_4 ^8 t^5 dt=(1/(12))(8^6 −4^6 )=(1/(12))×4^6 (2^6 −1)=((63)/2)×4^6

yes.sincewemustchangetheparametert=2x+4dt=2dx{x=0t=4x=2t=81248t5dt=112(8646)=112×46(261)=632×46

Commented by Rio Michael last updated on 17/Aug/19

thank you sir.

thankyousir.

Commented by Cmr 237 last updated on 17/Aug/19

no⊛  0.5∫_4 ^8 t^5 dt=0.5×−_6 ^1 [t^6 ]_4 ^8                       =−_(12) ^1 [8^6 −4^6 ]                     =21504 (( [(),() ]),() )

no0.548t5dt=0.5×16[t6]48=112[8646]=21504([])

Commented by kaivan.ahmadi last updated on 17/Aug/19

thank you sir

thankyousir

Answered by mr W last updated on 18/Aug/19

you mustn′t change limits, if you  proceed like this:   ∫_0 ^2 (2x +4)^5 dx    =(1/2)∫_0 ^2 (2x +4)^5 d(2x+4)   =(1/(2×6))[(2x+4)^6 ]_0 ^2   =(1/(12))[8^6 −4^6 ]  =21504

youmustntchangelimits,ifyouproceedlikethis:02(2x+4)5dx=1202(2x+4)5d(2x+4)=12×6[(2x+4)6]02=112[8646]=21504

Commented by Rio Michael last updated on 19/Aug/19

thanks sir

thankssir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com