Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66520 by mhmd last updated on 16/Aug/19

find the length r=2/1−cosθ         if θ between pi/2 to pi

findthelengthr=2/1cosθifθbetweenpi/2topi

Commented by kaivan.ahmadi last updated on 16/Aug/19

l=∫_(π/2) ^π (√(((dr/dθ))^2 +r^2 ))dθ  (dr/dθ)=((2sinθ)/((1−cosθ)^2 ))  ⇒∫_(π/2) ^π (√(((4sin^2 θ)/((1−cosθ)^4 ))+(4/((1−cosθ)^2 ))))dθ=∫_(π/2) ^π (√((4sin^2 θ+4(1−cosθ)^2 )/((1−cosθ)^4 )))dθ=  ∫_(π/2) ^π (√((8(1−cosθ))/((1−cosθ)^4 )))dθ=∫_(π/2) ^π (√(8/((1−cosθ)^3 )))dθ=  ∫_(π/2) ^π (√(8/(8sin^6 (θ/2))))dθ=∫_(π/2) ^π (1/(sin^3 (θ/2)))dθ=∫_(π/2) ^π ((sin(θ/2))/(sin^4 (θ/2)))dθ=  ∫_(π/2) ^π ((sin(θ/2))/((1−cos^2 (θ/2))^2 ))dθ  set u=cos(θ/2) ,it is easy now.

l=π2π(drdθ)2+r2dθdrdθ=2sinθ(1cosθ)2π2π4sin2θ(1cosθ)4+4(1cosθ)2dθ=π2π4sin2θ+4(1cosθ)2(1cosθ)4dθ=π2π8(1cosθ)(1cosθ)4dθ=π2π8(1cosθ)3dθ=π2π88sin6θ2dθ=π2π1sin3θ2dθ=π2πsinθ2sin4θ2dθ=π2πsinθ2(1cos2θ2)2dθsetu=cosθ2,itiseasynow.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com