Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 67471 by AnjanDey last updated on 27/Aug/19

Evaluate:∫(√(x(√(x+1)))) dx

$$\boldsymbol{{Evaluate}}:\int\sqrt{{x}\sqrt{{x}+\mathrm{1}}}\:{dx} \\ $$

Commented by MJS last updated on 28/Aug/19

∫(√(x(√(x+1))))dx=       [t=(√x) → dx=2(√x)dt]  =2∫t^2 (t^2 +1)^(1/4) dt=  =−(4/(21))∫(dt/((t^2 +1)^(3/4) ))+2∫((t^4 +t^2 +(2/(21)))/((t^2 +1)^(3/4) ))dt  =−(4/(21))∫(dt/((t^2 +1)^(3/4) ))+(4/(21))t(3t^2 +1)(t^2 +1)^(1/4)   ...I cannot solve the 1^(st)  one  plus I somehow solved the 2^(nd)  one but I really  don′t remember how... I lost some papers...  anyway (d/dt)[(4/(21))t(3t^2 +1)(t^2 +1)^(1/4) ]=2((t^4 +t^2 +(2/(21)))/((t^2 +1)^(3/4) ))  and −(4/(21(t^2 +1)^(3/4) ))+2((t^4 +t^2 +(2/(21)))/((t^2 +1)^(3/4) ))=2t^2 (t^2 +1)^(1/4)

$$\int\sqrt{{x}\sqrt{{x}+\mathrm{1}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}}{dt}\right] \\ $$$$=\mathrm{2}\int{t}^{\mathrm{2}} \left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} {dt}= \\ $$$$=−\frac{\mathrm{4}}{\mathrm{21}}\int\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} }+\mathrm{2}\int\frac{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{21}}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} }{dt} \\ $$$$=−\frac{\mathrm{4}}{\mathrm{21}}\int\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} }+\frac{\mathrm{4}}{\mathrm{21}}{t}\left(\mathrm{3}{t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$...\mathrm{I}\:\mathrm{cannot}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{one} \\ $$$$\mathrm{plus}\:\mathrm{I}\:\mathrm{somehow}\:\mathrm{solved}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one}\:\mathrm{but}\:\mathrm{I}\:\mathrm{really} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{remember}\:\mathrm{how}...\:\mathrm{I}\:\mathrm{lost}\:\mathrm{some}\:\mathrm{papers}... \\ $$$$\mathrm{anyway}\:\frac{{d}}{{dt}}\left[\frac{\mathrm{4}}{\mathrm{21}}{t}\left(\mathrm{3}{t}^{\mathrm{2}} +\mathrm{1}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \right]=\mathrm{2}\frac{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{21}}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} } \\ $$$$\mathrm{and}\:−\frac{\mathrm{4}}{\mathrm{21}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} }+\mathrm{2}\frac{{t}^{\mathrm{4}} +{t}^{\mathrm{2}} +\frac{\mathrm{2}}{\mathrm{21}}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{4}}} }=\mathrm{2}{t}^{\mathrm{2}} \left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$

Commented by Abdo msup. last updated on 28/Aug/19

let take  a try   we do the changement (√(x+1))=t ⇒  x+1=t^2  ⇒x =t^2 −1 ⇒  ∫(√(x(√(x+1))))dx =∫  (√((t^2 −1)t))(2t)dt  =2 ∫  t(√(t^3 −t))dt =2∫ t(√(t(t^2 −1)))dt  =2 ∫ t^(3/2) (√(t^2 −1))dt   and changement t =ch(u) give  I =2 ∫   (chu)^(3/2) sh(u)sh(u)du  by psrts   f^′ =sh(u)(chu)^(3/2)   and g=shu  I =(2/5)(chu)^(5/2)  sh(u)−∫  (2/5)(chu)^(5/2)  ch(u)du  =(2/5)(chu)^(5/2) −(2/5) ∫  (chu)^(7/2)  du  the probleme is how to calculate intehral at  form ∫  (chu)^r du  with r ∈ Q^+ ?   ...be continued...

$${let}\:{take}\:\:{a}\:{try}\:\:\:{we}\:{do}\:{the}\:{changement}\:\sqrt{{x}+\mathrm{1}}={t}\:\Rightarrow \\ $$$${x}+\mathrm{1}={t}^{\mathrm{2}} \:\Rightarrow{x}\:={t}^{\mathrm{2}} −\mathrm{1}\:\Rightarrow \\ $$$$\int\sqrt{{x}\sqrt{{x}+\mathrm{1}}}{dx}\:=\int\:\:\sqrt{\left({t}^{\mathrm{2}} −\mathrm{1}\right){t}}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int\:\:{t}\sqrt{{t}^{\mathrm{3}} −{t}}{dt}\:=\mathrm{2}\int\:{t}\sqrt{{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{dt} \\ $$$$=\mathrm{2}\:\int\:{t}^{\frac{\mathrm{3}}{\mathrm{2}}} \sqrt{{t}^{\mathrm{2}} −\mathrm{1}}{dt}\:\:\:{and}\:{changement}\:{t}\:={ch}\left({u}\right)\:{give} \\ $$$${I}\:=\mathrm{2}\:\int\:\:\:\left({chu}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {sh}\left({u}\right){sh}\left({u}\right){du} \\ $$$${by}\:{psrts}\:\:\:{f}^{'} ={sh}\left({u}\right)\left({chu}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:\:{and}\:{g}={shu} \\ $$$${I}\:=\frac{\mathrm{2}}{\mathrm{5}}\left({chu}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:{sh}\left({u}\right)−\int\:\:\frac{\mathrm{2}}{\mathrm{5}}\left({chu}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:{ch}\left({u}\right){du} \\ $$$$=\frac{\mathrm{2}}{\mathrm{5}}\left({chu}\right)^{\frac{\mathrm{5}}{\mathrm{2}}} −\frac{\mathrm{2}}{\mathrm{5}}\:\int\:\:\left({chu}\right)^{\frac{\mathrm{7}}{\mathrm{2}}} \:{du} \\ $$$${the}\:{probleme}\:{is}\:{how}\:{to}\:{calculate}\:{intehral}\:{at} \\ $$$${form}\:\int\:\:\left({chu}\right)^{{r}} {du}\:\:{with}\:{r}\:\in\:{Q}^{+} ?\:\:\:...{be}\:{continued}... \\ $$

Commented by Abdo msup. last updated on 28/Aug/19

sir mjs  this integral is not  simple  to solve...

$${sir}\:{mjs}\:\:{this}\:{integral}\:{is}\:{not}\:\:{simple}\:\:{to}\:{solve}... \\ $$

Commented by MJS last updated on 28/Aug/19

thank you for trying

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{trying} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com