Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66589 by Tanmay chaudhury last updated on 17/Aug/19

∫((sinx)/(1+sinx+sin2x))dx

sinx1+sinx+sin2xdx

Commented by MJS last updated on 17/Aug/19

Weierstrass [t=tan (x/2) → dx=((2dt)/(t^2 +1))] leads to  4∫(t/((t+1)(t^3 −3t^2 +5t+1)))dt  t^3 −3t^2 +5t+1=  =(t−α−β−1)(t^2 +(α+β−2)t+(α^2 +β^2 −αβ−α−β+1))  α=((−2−(2/9)(√(87))))^(1/3)   β=((−2+(2/9)(√(87))))^(1/3)   α+β+1=A  α+β−2=B  α^2 +β^2 −αβ−α−β+1=C  4∫(t/((t+1)(t−A)(t^2 +Bt+C)))dt=  =−(4/((A+1)(B−C−1)))∫(dt/(t+1))+       +((4A)/((A+1)(A^2 +AB+C)))∫(dt/(t−A))+       +(4/((A^2 +AB+C)(B−C−1)))∫(((A+C)t+(A+B−1)C)/(t^2 +Bt+C))dt  now solve these...  I found no easier path

Weierstrass[t=tanx2dx=2dtt2+1]leadsto4t(t+1)(t33t2+5t+1)dtt33t2+5t+1==(tαβ1)(t2+(α+β2)t+(α2+β2αβαβ+1))α=229873β=2+29873α+β+1=Aα+β2=Bα2+β2αβαβ+1=C4t(t+1)(tA)(t2+Bt+C)dt==4(A+1)(BC1)dtt+1++4A(A+1)(A2+AB+C)dttA++4(A2+AB+C)(BC1)(A+C)t+(A+B1)Ct2+Bt+Cdtnowsolvethese...Ifoundnoeasierpath

Commented by MJS last updated on 17/Aug/19

...corrected a mistake

...correctedamistake

Commented by Tanmay chaudhury last updated on 17/Aug/19

excellent sir...i shall try to complete

excellentsir...ishalltrytocomplete

Commented by mathmax by abdo last updated on 18/Aug/19

let I =∫ ((sinx)/(1+sinx +sin(2x)))dx ⇒ I =∫  ((sinx)/(1+sinx +2sinx cosx))dx  changement tan((x/2))=t give   I =∫     (((2t)/(1+t^2 ))/(1+((2t)/(1+t^2 ))+2 ((2t)/(1+t^2 ))((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫((4t)/((1+t^2 )^2 {1+((2t)/(1+t^2 )) +((4t(1−t^2 ))/((1+t^2 )^2 ))}))dt  =∫   ((4tdt)/((1+t^2 )^2  +2t(1+t^2 )+4t(1−t^2 ))) =∫  ((4tdt)/(t^4  +2t^2  +1+2t+2t^3  +4t−4t^3 ))  =∫  ((4tdt)/(t^4  −2t^3  +2t^2  +6t +1)) let decompose the fraction  F(t) =((4t)/(t^4 −2t^3  +2t^2  +6t +1))  t^4  −2t^3  +2t^2  +6t +1 =0  the roots are   t_1 =1,5898 +1,7445i (complex)  t_2 ∼1,5898−1,7445i (complex)  t_3 =−1  (real)  t_4 ∼−0,1795 (real)           ⇒ F(t)∼ ((4t)/((t−t_1 )(t−t_1 ^− )(t+1)(t−t_4 )))  =((4t)/((t^2 −2Re(t_1 )t  +∣t_1 ∣^2 )(t+1)(t−t_4 ))) =(a/(t+1)) +(b/(t−t_4 )) +((ct+d)/(t^2 −2Re(t_1 )t +∣t_1 ∣^2 ))  ⇒I =aln∣t+1∣+bln∣t−t_4 ∣  +∫   ((ct +d)/(t^2 −2Re(t_1 )t +∣t_1 ∣^2 ))  rest to calculate a,b,c and d....becontinued....

letI=sinx1+sinx+sin(2x)dxI=sinx1+sinx+2sinxcosxdxchangementtan(x2)=tgiveI=2t1+t21+2t1+t2+22t1+t21t21+t22dt1+t2=4t(1+t2)2{1+2t1+t2+4t(1t2)(1+t2)2}dt=4tdt(1+t2)2+2t(1+t2)+4t(1t2)=4tdtt4+2t2+1+2t+2t3+4t4t3=4tdtt42t3+2t2+6t+1letdecomposethefractionF(t)=4tt42t3+2t2+6t+1t42t3+2t2+6t+1=0therootsaret1=1,5898+1,7445i(complex)t21,58981,7445i(complex)t3=1(real)t40,1795(real)F(t)4t(tt1)(tt1)(t+1)(tt4)=4t(t22Re(t1)t+t12)(t+1)(tt4)=at+1+btt4+ct+dt22Re(t1)t+t12I=alnt+1+blntt4+ct+dt22Re(t1)t+t12resttocalculatea,b,candd....becontinued....

Commented by ~ À ® @ 237 ~ last updated on 18/Aug/19

Let named it F(x)   We  can explicit the denominator   1+sinx+sin(2x)= Im (1+e^(ix) +e^(i2x) )=Im(((e^(i3x) −1)/(e^(ix) −1)))=Im(((e^(i((3x)/2)) (e^(i((3x)/2)) −e^(−i((3x)/2)) ))/(e^(i(x/2)) (e^(i(x/2)) −e^(−i(x/2)) ))))=Im(((e^(ix) . sin(((3x)/2)))/(sin((x/2)))))=((sin(3((x/2))))/(sin((x/2)))) Im(e^(ix) )= (3−4sin^2 ((x/2))) sinx        using (sin3θ= 3sinθ −4sin^3 θ )  Now   F(x)= ∫ (( dx)/(3−4sin^2 ((x/2)))) = 2G(u)        avec  G(u)= ∫ (du/(3−4sin^2 u))   ( stating x=2u )  G(u)= ∫ ((1/(cos^2 u))/((3/(cos^2 u))−4tan^2 u)) du = ∫((1+tan^2 u)/(3 −tan^2 u)) du     ( remember (1/(cos^2 u))=1+tan^2 u )             =  (1/3) ∫  (((1+tan^2 u))/(1−(((tanu)/((√3) )))^2 )) du = (1/(√3))  argth(((tanu)/((√3) ))) + c  Finally we get  F(x)= (2/(√3)) argth(((tan((x/2)))/(√3))) + k

LetnameditF(x)Wecanexplicitthedenominator1+sinx+sin(2x)=Im(1+eix+ei2x)=Im(ei3x1eix1)=Im(ei3x2(ei3x2ei3x2)eix2(eix2eix2))=Im(eix.sin(3x2)sin(x2))=sin(3(x2))sin(x2)Im(eix)=(34sin2(x2))sinxusing(sin3θ=3sinθ4sin3θ)NowF(x)=dx34sin2(x2)=2G(u)avecG(u)=du34sin2u(statingx=2u)G(u)=1cos2u3cos2u4tan2udu=1+tan2u3tan2udu(remember1cos2u=1+tan2u)=13(1+tan2u)1(tanu3)2du=13argth(tanu3)+cFinallywegetF(x)=23argth(tan(x2)3)+k

Answered by Rio Michael last updated on 17/Aug/19

 ∫((sinx)/(1 + sinx + sin2x)) = ∫ sinxdx + ∫dx + ∫(1/(2cosx))dx                                           = −cosx + x + (1/2)ln∣ secx + tanx∣ + c                                           = x −cosx + (1/2) ln ∣ secx + tanx ∣ + c  please check.

sinx1+sinx+sin2x=sinxdx+dx+12cosxdx=cosx+x+12lnsecx+tanx+c=xcosx+12lnsecx+tanx+cpleasecheck.

Commented by mr W last updated on 17/Aug/19

totally wrong sir!  (a/(x+y+z))≠(a/x)+(a/y)+(a/z) !

totallywrongsir!ax+y+zax+ay+az!

Commented by MJS last updated on 17/Aug/19

wrong. learn the laws of calculating with fractiond  (a/(a+b))≠(a/b)+(a/c)  (a/b)+(a/c)=((ac)/(bc))+((ab)/(bc))=((a(b+c))/(bc))  how could this be true: (5/6)=(5/(5+1))=(5/5)+(5/1)=1+5=6 but  (5/6)=(5/(2+4))=(5/2)+(5/4)=((15)/4) and (5/6)=(5/(3+3))=(5/3)+(5/3)=((10)/3)  ⇒^?  (5/6)=6=((15)/4)=((10)/3)

wrong.learnthelawsofcalculatingwithfractiondaa+bab+acab+ac=acbc+abbc=a(b+c)bchowcouldthisbetrue:56=55+1=55+51=1+5=6but56=52+4=52+54=154and56=53+3=53+53=103?56=6=154=103

Commented by Cmr 237 last updated on 17/Aug/19

Answered by Cmr 237 last updated on 17/Aug/19

Commented by MJS last updated on 17/Aug/19

you simply typed this into a solver. but can  you explain what happened along the path?

yousimplytypedthisintoasolver.butcanyouexplainwhathappenedalongthepath?

Commented by mathmax by abdo last updated on 18/Aug/19

this solution is not correct.

thissolutionisnotcorrect.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com