Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 66620 by Mohamed Amine Bouguezzoul last updated on 18/Aug/19

find lim_(n→∞)  I_n   I_n =∫_0 ^∞ (dx/((1+coth (nx))^n )) ,n≥1

$${find}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{I}_{{n}} \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\left(\mathrm{1}+\mathrm{coth}\:\left({nx}\right)\right)^{{n}} }\:,{n}\geqslant\mathrm{1} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 19/Aug/19

coth(nx) =((ch(nx))/(sh(nx))) =((e^(nx)  +e^(−nx) )/(e^(nx) −e^(−nx) ))  ⇒1+coth(nx) =1+((e^(nx)  +e^(−nx) )/(e^(nx) −e^(−nx) ))  =((e^(nx) −e^(−nx)  +e^(nx) +e^(−nx) )/(e^(nx) −e^(−nx) )) =((2e^(nx) )/(e^(nx) (1−e^(−2nx) ))) =(2/(1−e^(−2nx) )) ⇒  I_n =∫_0 ^∞      (dx/(((2/(1−e^(−2nx) )))^n )) =∫_0 ^∞   (1/2^n )(1−e^(−nx) )^n  dx  =∫_0 ^∞  (1/2^n )e^(nln(1−e^(−nx) )) dx  =∫_0 ^∞ f_n (x)dx with f_n (x) =(1/2^n )e^(nln(1−e^(−nx) ))   we have ln(1−e^(−nx) )∼−e^(−nx)  and nln(1−e^(−nx) )∼−ne^(−nx)  ⇒  f_n (x)∼(1/2^n )e^(−ne^(−nx) )  →0 (n→+∞)   the sequences (f_n )are continues  lim_(n→+∞)  I_n =∫_R^+   lim_(n→+∞)    f_n (x) =0

$${coth}\left({nx}\right)\:=\frac{{ch}\left({nx}\right)}{{sh}\left({nx}\right)}\:=\frac{{e}^{{nx}} \:+{e}^{−{nx}} }{{e}^{{nx}} −{e}^{−{nx}} }\:\:\Rightarrow\mathrm{1}+{coth}\left({nx}\right)\:=\mathrm{1}+\frac{{e}^{{nx}} \:+{e}^{−{nx}} }{{e}^{{nx}} −{e}^{−{nx}} } \\ $$$$=\frac{{e}^{{nx}} −{e}^{−{nx}} \:+{e}^{{nx}} +{e}^{−{nx}} }{{e}^{{nx}} −{e}^{−{nx}} }\:=\frac{\mathrm{2}{e}^{{nx}} }{{e}^{{nx}} \left(\mathrm{1}−{e}^{−\mathrm{2}{nx}} \right)}\:=\frac{\mathrm{2}}{\mathrm{1}−{e}^{−\mathrm{2}{nx}} }\:\Rightarrow \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dx}}{\left(\frac{\mathrm{2}}{\mathrm{1}−{e}^{−\mathrm{2}{nx}} }\right)^{{n}} }\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\mathrm{1}−{e}^{−{nx}} \right)^{{n}} \:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{e}^{{nln}\left(\mathrm{1}−{e}^{−{nx}} \right)} {dx}\:\:=\int_{\mathrm{0}} ^{\infty} {f}_{{n}} \left({x}\right){dx}\:{with}\:{f}_{{n}} \left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{e}^{{nln}\left(\mathrm{1}−{e}^{−{nx}} \right)} \\ $$$${we}\:{have}\:{ln}\left(\mathrm{1}−{e}^{−{nx}} \right)\sim−{e}^{−{nx}} \:{and}\:{nln}\left(\mathrm{1}−{e}^{−{nx}} \right)\sim−{ne}^{−{nx}} \:\Rightarrow \\ $$$${f}_{{n}} \left({x}\right)\sim\frac{\mathrm{1}}{\mathrm{2}^{{n}} }{e}^{−{ne}^{−{nx}} } \:\rightarrow\mathrm{0}\:\left({n}\rightarrow+\infty\right)\:\:\:{the}\:{sequences}\:\left({f}_{{n}} \right){are}\:{continues} \\ $$$${lim}_{{n}\rightarrow+\infty} \:{I}_{{n}} =\int_{{R}^{+} } \:{lim}_{{n}\rightarrow+\infty} \:\:\:{f}_{{n}} \left({x}\right)\:=\mathrm{0} \\ $$

Commented by Mohamed Amine Bouguezzoul last updated on 20/Aug/19

excellent work abdo.

$${excellent}\:{work}\:{abdo}. \\ $$

Commented by mathmax by abdo last updated on 26/Aug/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com