Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66694 by mathmax by abdo last updated on 18/Aug/19

let f(a) =∫_(−∞) ^(+∞)   (dx/((x^4 +x^2  +a))) with a∈](1/4),+∞[  1) calculate f(a)  2)find also g(a) =∫_(−∞) ^(+∞)  (dx/((x^4  +x^2 +a)^2 ))  3) find the value of integrals  ∫_0 ^∞  (dx/((x^4  +x^2  +3))) and  ∫_0 ^∞     (dx/((x^4  +x^2  +1)^2 ))  4) developp f at integrserie.

letf(a)=+dx(x4+x2+a)witha]14,+[1)calculatef(a)2)findalsog(a)=+dx(x4+x2+a)23)findthevalueofintegrals0dx(x4+x2+3)and0dx(x4+x2+1)24)developpfatintegrserie.

Commented by mathmax by abdo last updated on 19/Aug/19

1) f(a) =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +a))  x^4  +x^2  +a =0 ⇒t^2  +t +a=0 (t=x^2 )  Δ=1−4a<0 ⇒Δ =(i(√(4a−1)))^2  ⇒t_1 =((−1+i(√(4a−1)))/2) and  t_2 =((−1−i(√(4a−1)))/2) ⇒t^2  +t+a =(t−t_1 )(t−t_2 )=(x^2 −t_1 )(x^2 −t_2 ) ⇒  f(a) =∫_(−∞) ^(+∞)  (dx/((x^2 −t_1 )(x^2 −t_2 ))) = ∫_(−∞) ^(+∞) {(1/(x^2 −t_1 ))−(1/(x^2 −t_2 ))}dx  =(1/(i(√(4a−1)))){ ∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )) −∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 ^− ))}  =(1/(i(√(4a−1)))){2i Im( ∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )))} =(2/(√(4a−1))) Im(∫_(−∞) ^(+∞)   (dx/(x^2 −t_1 )))  let calculate ∫_(−∞) ^(+∞)  (dx/(x^2 −t_1 )) let w(z) =(1/(z^2 −t_1 ))   poles of w?  ∣t_1 ∣ =(1/2)(√(1+4a−1))=(√a) ⇒t_1 =(√a)e^(−iarctan((√(4a−1))))   ⇒(√t_1 )=^4 (√a)e^(−(i/2)arctan((√(4a−1))))  ⇒ w(z) =(1/((z−^4 (√a)e^(−(i/2)arctan((√(4a−1)))) )(z+^4 (√a)e^(−(i/2)arctan((√(4a−1)))) )))  residus theorem give   ∫_(−∞) ^(+∞) w(z)dz =2iπ Res(w,−^4 (√a)e^(−(i/2)arctan((√(4a−1)))) )  =2iπ×(1/(−2(^4 (√a))e^(−(i/2)arctan((√(4a−1)))) )) =−((iπ)/((^4 (√a)))) e^((i/2)rctan((√(4a−1))))   =((−iπ)/((^4 (√a)))){ cos(((arctan((√(4a−1))))/2))+i sin(((arctan((√(4a−1)))/2))} ⇒  f(a) =(2/(√(4a−1)))(((−π)/((^4 (√a)))) cos(((arctan((√(4a−1))))/2)))  =((−2π)/((√(4a−1))(^4 (√a)))) cos(((arctan((√(4a−1))))/2))  cos^2 ((α/2)) =((1+cos(α))/2) ⇒cos((α/2))=+^− (√((1+cosα)/2))  here α=arctan(√(4a−1)) ⇒ cosα =(1/(√(1+((√(4a−1)))^2 ))) =(1/(2(√a))) ⇒  cos((α/2)) =+^− (√((1+(1/(2(√a))))/2))=+^− (√((1+2(√a))/(4(√a))))=+^− (1/2)(√((1+2(√a))/(√a)))  but f(a)>0 ⇒cos((α/2))=−(1/2)((√(1+2(√a)))/((^4 (√a)))) ⇒  f(a) =((−2π)/((√(4a−1))(^4 (√a))^2 ))×((−1)/2)(√(1+2(√a)))=((π(√(1+2(√a))))/((√a)(√(4a−1)))) ⇒  f(a) =(π/(√a))(√((1+2(√a))/(4a−1)))  with a>(1/4)

1)f(a)=+dxx4+x2+ax4+x2+a=0t2+t+a=0(t=x2)Δ=14a<0Δ=(i4a1)2t1=1+i4a12andt2=1i4a12t2+t+a=(tt1)(tt2)=(x2t1)(x2t2)f(a)=+dx(x2t1)(x2t2)=+{1x2t11x2t2}dx=1i4a1{+dxx2t1+dxx2t1}=1i4a1{2iIm(+dxx2t1)}=24a1Im(+dxx2t1)letcalculate+dxx2t1letw(z)=1z2t1polesofw?t1=121+4a1=at1=aeiarctan(4a1)t1=4aei2arctan(4a1)w(z)=1(z4aei2arctan(4a1))(z+4aei2arctan(4a1))residustheoremgive+w(z)dz=2iπRes(w,4aei2arctan(4a1))=2iπ×12(4a)ei2arctan(4a1)=iπ(4a)ei2rctan(4a1)=iπ(4a){cos(arctan(4a1)2)+isin(arctan(4a12)}f(a)=24a1(π(4a)cos(arctan(4a1)2))=2π4a1(4a)cos(arctan(4a1)2)cos2(α2)=1+cos(α)2cos(α2)=+1+cosα2hereα=arctan4a1cosα=11+(4a1)2=12acos(α2)=+1+12a2=+1+2a4a=+121+2aabutf(a)>0cos(α2)=121+2a(4a)f(a)=2π4a1(4a)2×121+2a=π1+2aa4a1f(a)=πa1+2a4a1witha>14

Commented by mathmax by abdo last updated on 19/Aug/19

2)  we have f^′ (a) =−∫_(−∞) ^(+∞)  (dx/((x^4  +x^2  +a)^2 )) =−g(a) ⇒  g(a)=−f^′ (a)     f(a) is known rest to calculate f^′ (a)

2)wehavef(a)=+dx(x4+x2+a)2=g(a)g(a)=f(a)f(a)isknownresttocalculatef(a)

Commented by mathmax by abdo last updated on 19/Aug/19

3) ∫_0 ^∞   (dx/(x^4  +x^2  +3)) =(1/2)∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +3)) =(1/2)f(3)  =(π/(2(√3)))(√((1+2(√3))/(11)))

3)0dxx4+x2+3=12+dxx4+x2+3=12f(3)=π231+2311

Terms of Service

Privacy Policy

Contact: info@tinkutara.com