Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66695 by mathmax by abdo last updated on 18/Aug/19

calculate ∫_0 ^∞   ((cos(arctanx))/(4+x^2 ))dx

calculate0cos(arctanx)4+x2dx

Commented by ~ À ® @ 237 ~ last updated on 18/Aug/19

 Let named it J   As 1+tan^2 t=(1/(cos^2 t))  we have  cos(arctanx)=(1/((√(1+x^2 )) ))  Now  J=∫_0 ^∞   (dx/((4+x^2 )(√(1+x^2 ))))   let state x=shu ⇒ du=(dx/((√(1+x^2 )) ))  J= ∫_0 ^∞ (( du)/(4+sh^2 u)) = ∫_0 ^∞  ((1/(ch^2 u))/((4/(ch^2 u)) + th^2 u)) du   As   (1/(ch^2 u)) =1−th^2 u  and  (d/du) (thu)=(1/(ch^2 u))     we have  J= ∫_0 ^∞  ((d(thu))/(4 −3th^2 u)) = (1/4). ∫_0 ^∞  ((d(thu))/(1−((((√3) )/2) thu)^2 ))=(1/(2(√3))) .∫_0 ^∞  (( d(((√3)/2) thu))/(1−(((√3)/2) thu)^2 )) =(1/(2(√3))) [argth(((√3)/2) thu)]_0 ^∞ = (1/(2(√3))) argth(((√3)/2))  finally  J= (1/(2(√3))) . (1/2)ln(((1+((√3)/2))/(1−((√3)/2))))=(1/(4(√3) )). ln(((4+2(√3))/(4−2(√3))) )=((ln(1+(√3)))/(√3)) −((ln2)/(2(√3)))

LetnameditJAs1+tan2t=1cos2twehavecos(arctanx)=11+x2NowJ=0dx(4+x2)1+x2letstatex=shudu=dx1+x2J=0du4+sh2u=01ch2u4ch2u+th2uduAs1ch2u=1th2uandddu(thu)=1ch2uwehaveJ=0d(thu)43th2u=14.0d(thu)1(32thu)2=123.0d(32thu)1(32thu)2=123[argth(32thu)]0=123argth(32)finallyJ=123.12ln(1+32132)=143.ln(4+23423)=ln(1+3)3ln223

Commented by mathmax by abdo last updated on 19/Aug/19

thanks sir.

thankssir.

Commented by mathmax by abdo last updated on 19/Aug/19

let I=∫_0 ^∞   ((cos(arctanx))/(4+x^2 ))dx  we know that cos(arctanx)=(1/(√(1+x^2 )))  ⇒ I =∫_0 ^∞    (dx/((x^2  +4)(√(1+x^2 ))))  changement  x=sht give  I =∫_0 ^∞  ((ch(t))/((sh^2 t +4)ch(t)))dt =∫_0 ^∞    (dt/(4+((ch(2t)−1)/2))) =∫_0 ^∞  ((2dt)/(8+ch(2t)−1))  =∫_0 ^∞    ((2dt)/(7+ch(2t))) =∫_0 ^∞    ((2dt)/(7+((e^(2t)  +e^(−2t) )/2))) =∫_0 ^∞   ((4dt)/(14+e^(2t)  +e^(−2t) ))  =_(e^(2t) =u)    ∫_1 ^(+∞)     (4/(14 +u+u^(−1) )) (du/(2u)) = ∫_1 ^(+∞)   ((2du)/(14u +u^2  +1))  =∫_1 ^(+∞)  ((2du)/(u^2  +14u +1))  u^2  +14u+1=0→Δ^′ =7^2 −1 =48 ⇒u_1 =−7+(√(48))=−7+4(√3)  u_2 =−7−4(√3) ⇒I =∫_1 ^(+∞)   ((2du)/((u−u_1 )(u−u_2 )))  =(2/(8(√3)))∫_1 ^(+∞)  {(1/(u−u_1 ))−(1/(u−u_2 ))}du =(1/(4(√3)))[ln∣((u−u_1 )/(u−u_2 ))∣]_1 ^(+∞)   =(1/(4(√3))){−ln∣((1−u_1 )/(1−u_2 ))∣} =(1/(4(√3))){ln∣((1+7+4(√3))/(1+7−4(√3)))∣} =(1/(4(√3)))ln∣((8+4(√3))/(8−4(√3)))∣  =(1/(4(√3)))ln(((2+(√3))/(2−(√3)))) .

letI=0cos(arctanx)4+x2dxweknowthatcos(arctanx)=11+x2I=0dx(x2+4)1+x2changementx=shtgiveI=0ch(t)(sh2t+4)ch(t)dt=0dt4+ch(2t)12=02dt8+ch(2t)1=02dt7+ch(2t)=02dt7+e2t+e2t2=04dt14+e2t+e2t=e2t=u1+414+u+u1du2u=1+2du14u+u2+1=1+2duu2+14u+1u2+14u+1=0Δ=721=48u1=7+48=7+43u2=743I=1+2du(uu1)(uu2)=2831+{1uu11uu2}du=143[lnuu1uu2]1+=143{ln1u11u2}=143{ln1+7+431+743}=143ln8+43843=143ln(2+323).

Answered by mind is power last updated on 18/Aug/19

cos(arctg(x))=cos(x)=(1/(√(1+tg^2 (x))))==>(1/(√((1+x^2 ))))=cos(arctg(x)).x≥0  =∫_0 ^(+∞) (dx/((√((1+x^2 )))(4+x^2 )))  x=sh(t)  dx=ch(t)  ==>∫_0 ^(+∞) ((ch(t)dt)/(ch(t)(4+sh^2 (t))))  withe e^t =w=≥dt=(1/w)dw  ==>∫_1 ^(+∞) (dw/(w(4+(w^2 /4)+(1/(4w^2 ))−1)))=∫_(−∞) ^(+∞) ((4wdw)/((w^4 +12w^2 +1)))=∫((4w)/((w^2 +6−(√(35)))(w^2 +6+(√(35)))))  ((4w)/((w^2 +6−(√(35)))(w^2 +6+(√(35)))))=(2/(√(35)))((w/(w^2 +6−(√(35))))−(w/(w^2 +6+(√(35)))))  ==>∫((4wdw)/(w^4 −12w^2 +1))=(1/(√(35)))ln(((w^2 +6−(√(35)))/(w^2 +6+(√(35)))))+c  ==>∫_1 ^(+∞) ((4wdw)/(w^4 −12w^2 +1))=lim_(x→∞) [(2/(√(35)))ln (((w^2 +6−(√(35)))/(w^2 +6+(√(35)))))]_1 ^x   =lim_(x→+∞) (2/(√(35)))ln(((x^2 +6−(√(35)))/(x^2 +6+(√(35)))))+(2/(√(35)))ln(((7+(√(35)))/(7−(√(35)))))=(2/(√(35)))ln(((7+(√(35)))/(7−(√(35)))))

cos(arctg(x))=cos(x)=11+tg2(x)==>1(1+x2)=cos(arctg(x)).x0=0+dx(1+x2)(4+x2)x=sh(t)dx=ch(t)==>0+ch(t)dtch(t)(4+sh2(t))witheet=w=⩾dt=1wdw==>1+dww(4+w24+14w21)=+4wdw(w4+12w2+1)=4w(w2+635)(w2+6+35)4w(w2+635)(w2+6+35)=235(ww2+635ww2+6+35)==>4wdww412w2+1=135ln(w2+635w2+6+35)+c==>1+4wdww412w2+1=limx[235ln(w2+635w2+6+35)]1x=limx+235ln(x2+635x2+6+35)+235ln(7+35735)=235ln(7+35735)

Commented by mathmax by abdo last updated on 19/Aug/19

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com