Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66728 by Tony Lin last updated on 19/Aug/19

∫_1 ^∞ (1/(x(√(x^2 +1))))=?

$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}=? \\ $$

Commented by mathmax by abdo last updated on 19/Aug/19

changement x=sht give ∫_1 ^(+∞)  (dx/(x(√(1+x^2 )))) =∫_(argsh(1)) ^(+∞)   ((ch(t)dt)/(sh(t)ch(t)))  =2∫_(ln(1+(√2))) ^(+∞)   (dt/(e^t −e^(−t) )) =_(e^t =u)      2 ∫_(1+(√2)) ^(+∞)   (1/(u−u^(−1) ))(du/u)  =2 ∫_(1+(√2)) ^(+∞)   (du/(u^2 −1)) =∫_(1+(√2)) ^(+∞) {(1/(u−1))−(1/(u+1))}du=[ln∣((u−1)/(u+1))∣]_(1+(√2)) ^(+∞)   =−ln∣((1+(√2)−1)/(1+(√2)+1))∣ =−ln(((√2)/(2+(√2))))=ln(((2+(√2))/(√2))) =ln(1+(√2))

$${changement}\:{x}={sht}\:{give}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:=\int_{{argsh}\left(\mathrm{1}\right)} ^{+\infty} \:\:\frac{{ch}\left({t}\right){dt}}{{sh}\left({t}\right){ch}\left({t}\right)} \\ $$$$=\mathrm{2}\int_{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{+\infty} \:\:\frac{{dt}}{{e}^{{t}} −{e}^{−{t}} }\:=_{{e}^{{t}} ={u}} \:\:\:\:\:\mathrm{2}\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{+\infty} \:\:\frac{\mathrm{1}}{{u}−{u}^{−\mathrm{1}} }\frac{{du}}{{u}} \\ $$$$=\mathrm{2}\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{+\infty} \:\:\frac{{du}}{{u}^{\mathrm{2}} −\mathrm{1}}\:=\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{+\infty} \left\{\frac{\mathrm{1}}{{u}−\mathrm{1}}−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right\}{du}=\left[{ln}\mid\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}\mid\right]_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{+\infty} \\ $$$$=−{ln}\mid\frac{\mathrm{1}+\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{2}}+\mathrm{1}}\mid\:=−{ln}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}\right)={ln}\left(\frac{\mathrm{2}+\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}}\right)\:={ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$

Commented by Tony Lin last updated on 19/Aug/19

thanks sir

$${thanks}\:{sir} \\ $$

Answered by Souvik Ghosh last updated on 19/Aug/19

⇔let   x=tan Θ⇔dx=sec^2 Θ.dΘ  so  I=∫_(π/4) ^(π/2) ((sec^2 ΘdΘ)/(tanΘ×sec Θ))       I=∫_(π/4) ^(π/2) cosec Θ dΘ        I=−ln[(√2)−1]

$$\Leftrightarrow\mathrm{let}\:\:\:\mathrm{x}=\mathrm{tan}\:\Theta\Leftrightarrow\mathrm{dx}=\mathrm{sec}\:^{\mathrm{2}} \Theta.\mathrm{d}\Theta \\ $$$$\mathrm{so}\:\:\mathrm{I}=\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \frac{\mathrm{sec}^{\mathrm{2}} \Theta\mathrm{d}\Theta}{\mathrm{tan}\Theta×\mathrm{sec}\:\Theta} \\ $$$$\:\:\:\:\:\mathrm{I}=\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \mathrm{cosec}\:\Theta\:\mathrm{d}\Theta \\ $$$$\:\:\:\:\:\:\mathrm{I}=−\mathrm{ln}\left[\sqrt{\mathrm{2}}−\mathrm{1}\right] \\ $$$$\:\:\:\:\:\: \\ $$

Answered by Souvik Ghosh last updated on 19/Aug/19

⇔let   x=tan Θ⇔dx=sec^2 Θ.dΘ  so  I=∫_(π/4) ^(π/2) ((sec^2 ΘdΘ)/(tanΘ×sec Θ))       I=∫_(π/4) ^(π/2) cosec Θ dΘ        I=−ln[(√2)−1]

$$\Leftrightarrow\mathrm{let}\:\:\:\mathrm{x}=\mathrm{tan}\:\Theta\Leftrightarrow\mathrm{dx}=\mathrm{sec}\:^{\mathrm{2}} \Theta.\mathrm{d}\Theta \\ $$$$\mathrm{so}\:\:\mathrm{I}=\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \frac{\mathrm{sec}^{\mathrm{2}} \Theta\mathrm{d}\Theta}{\mathrm{tan}\Theta×\mathrm{sec}\:\Theta} \\ $$$$\:\:\:\:\:\mathrm{I}=\int_{\pi/\mathrm{4}} ^{\pi/\mathrm{2}} \mathrm{cosec}\:\Theta\:\mathrm{d}\Theta \\ $$$$\:\:\:\:\:\:\mathrm{I}=−\mathrm{ln}\left[\sqrt{\mathrm{2}}−\mathrm{1}\right] \\ $$$$\:\:\:\:\:\: \\ $$

Commented by Tony Lin last updated on 19/Aug/19

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com