Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 66796 by mathmax by abdo last updated on 19/Aug/19

find the value of  ∫_0 ^1  ((ln(1+x^2 ))/x^2 )dx

$${find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx} \\ $$

Commented by mathmax by abdo last updated on 20/Aug/19

let I =∫_0 ^1 ((ln(1+x^2 ))/x^2 )dx  by parts  u^′ =(1/x^2 ) and v=ln(1+x^2 ) ⇒  I =[−(1/x)ln(1+x^2 )]_0 ^1 −∫_0 ^1 (−(1/x))((2x)/(1+x^2 ))dx  =−ln(2) +∫_0 ^1  (2/(1+x^2 ))dx =−ln(2)+2[arctanx]_0 ^1  =−ln(2)+2((π/4))  =(π/2)−ln(2) rest to prove that lim_(x→0)   ((ln(1+x^2 ))/x) =0  =lim_(x→0)   x ((ln(1+x^2 ))/x^2 ) =0  because lim_(u→0)   ((ln(1+u))/u) =1

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:\:{by}\:{parts}\:\:{u}^{'} =\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:{and}\:{v}={ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${I}\:=\left[−\frac{\mathrm{1}}{{x}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\frac{\mathrm{1}}{{x}}\right)\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=−{ln}\left(\mathrm{2}\right)\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=−{ln}\left(\mathrm{2}\right)+\mathrm{2}\left[{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=−{ln}\left(\mathrm{2}\right)+\mathrm{2}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\frac{\pi}{\mathrm{2}}−{ln}\left(\mathrm{2}\right)\:{rest}\:{to}\:{prove}\:{that}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}\:=\mathrm{0} \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}} \:\:{x}\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:=\mathrm{0}\:\:{because}\:{lim}_{{u}\rightarrow\mathrm{0}} \:\:\frac{{ln}\left(\mathrm{1}+{u}\right)}{{u}}\:=\mathrm{1} \\ $$

Commented by mathmax by abdo last updated on 20/Aug/19

remark  we have ln^′ (1+u) =(1/(1+u)) =Σ_(n=0) ^∞ (−1)^n u^n  if ∣u∣<1 ⇒  ln(1+u) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))u^(n+1)  =Σ_(n=1) ^∞  (((−1)^(n−1) u^n )/n) =−Σ_(n=1) ^∞ (((−1)^n )/n)u^n   ⇒ln(1+x^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n) x^(2n)  ⇒((ln(1+x^2 ))/x^2 ) =−Σ_(n=1) ^∞  (((−1)^n )/n)x^(2n−2)   ⇒∫_0 ^1  ((ln(1+x^2 ))/x^2 )dx =−Σ_(n=1) ^∞  (((−1)^n )/n) [(1/(2n−1))x^(2n−1) ]_0 ^1   =−Σ_(n=1) ^∞  (((−1)^n )/(n(2n−1))) =(π/2)−ln(2) ⇒Σ_(n=1) ^∞  (((−1)^n )/(n(2n−1))) =ln(2)−(π/2)

$${remark}\:\:{we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{u}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{u}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {u}^{{n}} \:{if}\:\mid{u}\mid<\mathrm{1}\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{u}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{1}}{u}^{{n}+\mathrm{1}} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {u}^{{n}} }{{n}}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{u}^{{n}} \\ $$$$\Rightarrow{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{x}^{\mathrm{2}{n}} \:\Rightarrow\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{x}^{\mathrm{2}{n}−\mathrm{2}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}\:=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:\left[\frac{\mathrm{1}}{\mathrm{2}{n}−\mathrm{1}}{x}^{\mathrm{2}{n}−\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}\:=\frac{\pi}{\mathrm{2}}−{ln}\left(\mathrm{2}\right)\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left(\mathrm{2}{n}−\mathrm{1}\right)}\:={ln}\left(\mathrm{2}\right)−\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com