Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 66832 by Rio Michael last updated on 20/Aug/19

solve the system of congruence      {: ((x≡ 1 (mod 5))),((x ≡ 2 (mod 7))),((x≡  3(mod 9))),((x ≡ 4( mod 11))) }

$${solve}\:{the}\:{system}\:{of}\:{congruence} \\ $$$$\:\:\:\left.\begin{matrix}{{x}\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{5}\right)}\\{{x}\:\equiv\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right)}\\{{x}\equiv\:\:\mathrm{3}\left({mod}\:\mathrm{9}\right)}\\{{x}\:\equiv\:\mathrm{4}\left(\:{mod}\:\mathrm{11}\right)}\end{matrix}\right\} \\ $$

Answered by mr W last updated on 26/Aug/19

x=5h+1    ...(1)  x=7i+2   ...(2)  x=9j+3   ...(3)  x=11k+4   ...(4)    x=11k+4=(11k+1)+3=^(!) 9j+3  ⇒11k+1=9j  ⇒9j−11k=1  ⇒j=11m+5   ^(∗∗))   ⇒k=9m+4    x=9(11m+5)+3=(99m+46)+2=^(!) 7i+2  ⇒99m+46=7i  ⇒7i−99m=46  ⇒i=99l+49   ^(∗∗))   ⇒m=7l+3    x=7(99l+49)+2=(693l+344)+1=^(!) 5h+1  ⇒693l+344=5h  ⇒5h−693l=344  ⇒h=693n+346   ^(∗∗))   ⇒l=5n+2    x=5(693n+346)+1=3465n+1731    ⇒general solution is  x=3465n+1731 with n=0,1,2,3,....

$${x}=\mathrm{5}{h}+\mathrm{1}\:\:\:\:...\left(\mathrm{1}\right) \\ $$$${x}=\mathrm{7}{i}+\mathrm{2}\:\:\:...\left(\mathrm{2}\right) \\ $$$${x}=\mathrm{9}{j}+\mathrm{3}\:\:\:...\left(\mathrm{3}\right) \\ $$$${x}=\mathrm{11}{k}+\mathrm{4}\:\:\:...\left(\mathrm{4}\right) \\ $$$$ \\ $$$${x}=\mathrm{11}{k}+\mathrm{4}=\left(\mathrm{11}{k}+\mathrm{1}\right)+\mathrm{3}\overset{!} {=}\mathrm{9}{j}+\mathrm{3} \\ $$$$\Rightarrow\mathrm{11}{k}+\mathrm{1}=\mathrm{9}{j} \\ $$$$\Rightarrow\mathrm{9}\boldsymbol{{j}}−\mathrm{11}\boldsymbol{{k}}=\mathrm{1} \\ $$$$\Rightarrow{j}=\mathrm{11}{m}+\mathrm{5}\:\:\:\:^{\left.\ast\ast\right)} \\ $$$$\Rightarrow{k}=\mathrm{9}{m}+\mathrm{4} \\ $$$$ \\ $$$${x}=\mathrm{9}\left(\mathrm{11}{m}+\mathrm{5}\right)+\mathrm{3}=\left(\mathrm{99}{m}+\mathrm{46}\right)+\mathrm{2}\overset{!} {=}\mathrm{7}{i}+\mathrm{2} \\ $$$$\Rightarrow\mathrm{99}{m}+\mathrm{46}=\mathrm{7}{i} \\ $$$$\Rightarrow\mathrm{7}\boldsymbol{{i}}−\mathrm{99}\boldsymbol{{m}}=\mathrm{46} \\ $$$$\Rightarrow{i}=\mathrm{99}{l}+\mathrm{49}\:\:\:\:^{\left.\ast\ast\right)} \\ $$$$\Rightarrow{m}=\mathrm{7}{l}+\mathrm{3} \\ $$$$ \\ $$$${x}=\mathrm{7}\left(\mathrm{99}{l}+\mathrm{49}\right)+\mathrm{2}=\left(\mathrm{693}{l}+\mathrm{344}\right)+\mathrm{1}\overset{!} {=}\mathrm{5}{h}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{693}{l}+\mathrm{344}=\mathrm{5}{h} \\ $$$$\Rightarrow\mathrm{5}\boldsymbol{{h}}−\mathrm{693}\boldsymbol{{l}}=\mathrm{344} \\ $$$$\Rightarrow{h}=\mathrm{693}{n}+\mathrm{346}\:\:\:\:^{\left.\ast\ast\right)} \\ $$$$\Rightarrow{l}=\mathrm{5}{n}+\mathrm{2} \\ $$$$ \\ $$$${x}=\mathrm{5}\left(\mathrm{693}{n}+\mathrm{346}\right)+\mathrm{1}=\mathrm{3465}{n}+\mathrm{1731} \\ $$$$ \\ $$$$\Rightarrow{general}\:{solution}\:{is} \\ $$$$\boldsymbol{{x}}=\mathrm{3465}\boldsymbol{{n}}+\mathrm{1731}\:{with}\:{n}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},.... \\ $$

Commented by mr W last updated on 21/Aug/19

are there any easier and more direct  ways to solve?    to understand ^(∗∗))  in my solution  see also my explanation in Q19198.

$${are}\:{there}\:{any}\:{easier}\:{and}\:{more}\:{direct} \\ $$$${ways}\:{to}\:{solve}? \\ $$$$ \\ $$$${to}\:{understand}\:\:^{\left.\ast\ast\right)} \:{in}\:{my}\:{solution} \\ $$$${see}\:{also}\:{my}\:{explanation}\:{in}\:{Q}\mathrm{19198}. \\ $$

Commented by Rio Michael last updated on 21/Aug/19

okay sir l′ll check but thanks for this

$${okay}\:{sir}\:{l}'{ll}\:{check}\:{but}\:{thanks}\:{for}\:{this} \\ $$

Commented by Rasheed.Sindhi last updated on 22/Aug/19

Sir mr W, I think it can be solved  by ′Chinese remainder theorm′,but  unfortinuately at the moment I′ve forgotten it.

$${Sir}\:{mr}\:{W},\:{I}\:{think}\:{it}\:{can}\:{be}\:{solved} \\ $$$${by}\:'{Chinese}\:{remainder}\:{theorm}',{but} \\ $$$${unfortinuately}\:{at}\:{the}\:{moment}\:{I}'{ve}\:{forgotten}\:{it}. \\ $$

Commented by Prithwish sen last updated on 22/Aug/19

By chinese remainder theorem  ∵ 5,7,9,11 are pairwise prime  let m = 5.7.9.11 = 3465  ∴ M_1 =(m/5) = 693, M_2 = (m/7) = 495, M_3  = (m/9) = 385  M_4 =(m/(11)) = 315  gcd(693,5)=1 ⇒693u+5v=1⇒u=2 v=−277  ∴693x≡1(mod5)has unique soln. x≡2(mod5)  gcd(495,7)=1⇒495u+7v=1⇒u=3 v=−212  ∴495x≡1(mod7)has unique soln. x≡3(mod7)  gcd(385,9)=1⇒385u+9v=1⇒u=4 v=−171  ∴385x≡1(mod9)has unique soln.x≡4(mod9)  gcd(315,11)=1⇒315u+11v=1⇒u=−3 v=86  ∴315x≡1(mod11)has unique soln.x≡−3(mod11)  i.e x≡8(mod11)  ∴ x_0 = 1.(693.2)+2.(495.3)+3.(385.4)+4.(315.8)            = 19056  ∴ The soln. is x ≡ 19056 (mod 3465)                       i.e x ≡ 1731 (mod 3465)

$$\mathrm{By}\:\mathrm{chinese}\:\mathrm{remainder}\:\mathrm{theorem} \\ $$$$\because\:\mathrm{5},\mathrm{7},\mathrm{9},\mathrm{11}\:\mathrm{are}\:\mathrm{pairwise}\:\mathrm{prime} \\ $$$$\mathrm{let}\:\mathrm{m}\:=\:\mathrm{5}.\mathrm{7}.\mathrm{9}.\mathrm{11}\:=\:\mathrm{3465} \\ $$$$\therefore\:\mathrm{M}_{\mathrm{1}} =\frac{\mathrm{m}}{\mathrm{5}}\:=\:\mathrm{693},\:\mathrm{M}_{\mathrm{2}} =\:\frac{\mathrm{m}}{\mathrm{7}}\:=\:\mathrm{495},\:\mathrm{M}_{\mathrm{3}} \:=\:\frac{\mathrm{m}}{\mathrm{9}}\:=\:\mathrm{385} \\ $$$$\mathrm{M}_{\mathrm{4}} =\frac{\mathrm{m}}{\mathrm{11}}\:=\:\mathrm{315} \\ $$$$\mathrm{gcd}\left(\mathrm{693},\mathrm{5}\right)=\mathrm{1}\:\Rightarrow\mathrm{693u}+\mathrm{5v}=\mathrm{1}\Rightarrow\mathrm{u}=\mathrm{2}\:\mathrm{v}=−\mathrm{277} \\ $$$$\therefore\mathrm{693x}\equiv\mathrm{1}\left(\mathrm{mod5}\right)\mathrm{has}\:\mathrm{unique}\:\mathrm{soln}.\:\mathrm{x}\equiv\mathrm{2}\left(\mathrm{mod5}\right) \\ $$$$\mathrm{gcd}\left(\mathrm{495},\mathrm{7}\right)=\mathrm{1}\Rightarrow\mathrm{495u}+\mathrm{7v}=\mathrm{1}\Rightarrow\mathrm{u}=\mathrm{3}\:\mathrm{v}=−\mathrm{212} \\ $$$$\therefore\mathrm{495x}\equiv\mathrm{1}\left(\mathrm{mod7}\right)\mathrm{has}\:\mathrm{unique}\:\mathrm{soln}.\:\mathrm{x}\equiv\mathrm{3}\left(\mathrm{mod7}\right) \\ $$$$\mathrm{gcd}\left(\mathrm{385},\mathrm{9}\right)=\mathrm{1}\Rightarrow\mathrm{385u}+\mathrm{9v}=\mathrm{1}\Rightarrow\mathrm{u}=\mathrm{4}\:\mathrm{v}=−\mathrm{171} \\ $$$$\therefore\mathrm{385x}\equiv\mathrm{1}\left(\mathrm{mod9}\right)\mathrm{has}\:\mathrm{unique}\:\mathrm{soln}.\mathrm{x}\equiv\mathrm{4}\left(\mathrm{mod9}\right) \\ $$$$\mathrm{gcd}\left(\mathrm{315},\mathrm{11}\right)=\mathrm{1}\Rightarrow\mathrm{315u}+\mathrm{11v}=\mathrm{1}\Rightarrow\mathrm{u}=−\mathrm{3}\:\mathrm{v}=\mathrm{86} \\ $$$$\therefore\mathrm{315x}\equiv\mathrm{1}\left(\mathrm{mod11}\right)\mathrm{has}\:\mathrm{unique}\:\mathrm{soln}.\mathrm{x}\equiv−\mathrm{3}\left(\mathrm{mod11}\right) \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{x}\equiv\mathrm{8}\left(\mathrm{mod11}\right) \\ $$$$\therefore\:\boldsymbol{\mathrm{x}}_{\mathrm{0}} =\:\mathrm{1}.\left(\mathrm{693}.\mathrm{2}\right)+\mathrm{2}.\left(\mathrm{495}.\mathrm{3}\right)+\mathrm{3}.\left(\mathrm{385}.\mathrm{4}\right)+\mathrm{4}.\left(\mathrm{315}.\mathrm{8}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\mathrm{19056} \\ $$$$\therefore\:\boldsymbol{\mathrm{T}}\mathrm{he}\:\mathrm{soln}.\:\mathrm{is}\:\boldsymbol{\mathrm{x}}\:\equiv\:\mathrm{19056}\:\left(\boldsymbol{\mathrm{mod}}\:\mathrm{3465}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{i}}.\boldsymbol{\mathrm{e}}\:\boldsymbol{\mathrm{x}}\:\equiv\:\mathrm{1731}\:\left(\boldsymbol{\mathrm{mod}}\:\mathrm{3465}\right) \\ $$

Commented by mr W last updated on 22/Aug/19

thank you for your effort sir!

$${thank}\:{you}\:{for}\:{your}\:{effort}\:{sir}! \\ $$

Commented by Prithwish sen last updated on 23/Aug/19

you are welcome sir.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$

Commented by Rio Michael last updated on 25/Aug/19

thanks alot you all, i really want to learn this part of mathematics, how do i go  about it? please help me.

$${thanks}\:{alot}\:{you}\:{all},\:{i}\:{really}\:{want}\:{to}\:{learn}\:{this}\:{part}\:{of}\:{mathematics},\:{how}\:{do}\:{i}\:{go} \\ $$$${about}\:{it}?\:{please}\:{help}\:{me}. \\ $$

Commented by mr W last updated on 25/Aug/19

at first please try not to write  endless long rows in your posts sir.  usually i ignore posts if i must  scroll horizontally when i read  them.  back to your question, if you want  to learn “chinese remainder” method,  i can not help you. please refer to  Wikipedia for more details. if  you want to learn about my method,  try to understand  how to solve  ax+by=c as i explained in question  No 19198.

$${at}\:{first}\:{please}\:{try}\:{not}\:{to}\:{write} \\ $$$${endless}\:{long}\:{rows}\:{in}\:{your}\:{posts}\:{sir}. \\ $$$${usually}\:{i}\:{ignore}\:{posts}\:{if}\:{i}\:{must} \\ $$$${scroll}\:{horizontally}\:{when}\:{i}\:{read} \\ $$$${them}. \\ $$$${back}\:{to}\:{your}\:{question},\:{if}\:{you}\:{want} \\ $$$${to}\:{learn}\:``{chinese}\:{remainder}''\:{method}, \\ $$$${i}\:{can}\:{not}\:{help}\:{you}.\:{please}\:{refer}\:{to} \\ $$$${Wikipedia}\:{for}\:{more}\:{details}.\:{if} \\ $$$${you}\:{want}\:{to}\:{learn}\:{about}\:{my}\:{method}, \\ $$$${try}\:{to}\:{understand}\:\:{how}\:{to}\:{solve} \\ $$$${ax}+{by}={c}\:{as}\:{i}\:{explained}\:{in}\:{question} \\ $$$${No}\:\mathrm{19198}. \\ $$

Commented by Rio Michael last updated on 29/Aug/19

yes i know how to solve linear diophantine equations

$${yes}\:{i}\:{know}\:{how}\:{to}\:{solve}\:{linear}\:{diophantine}\:{equations}\: \\ $$

Commented by Rio Michael last updated on 29/Aug/19

i′ll visit wikipedia

$${i}'{ll}\:{visit}\:{wikipedia} \\ $$

Answered by Rasheed.Sindhi last updated on 22/Aug/19

               An Arithmetic Way      {: ((x≡ 1 (mod 5) ...(i))),((x ≡ 2 (mod 7)....(ii))),((x≡  3(mod 9).....(iii))),((x ≡ 4( mod 11)...(iv))) }   (i)⇒x=6,11,16,21,...  Each number can be obtained by   adding 5 in previous.  We can see that 16 is also solution of  (ii)(....mod 7)   Any other such number(which is common  solution to (i) & (ii)) will be 35 (lcm of  5 &7)  greater than 16...  16,51,86,121,156,...  156 is also solution of (iii) (...mod 9)  So next such solution is 315( lcm(5,7,9) )  greater than 156  156,471,786,1101,1416,1731  1731 is also solution of (iv)(....mod 11)  Next such number is greater by any  multiple of lcm(5,7,9,11)=3465.  1731,5196,8661,...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathbb{A}\mathrm{n}\:\mathbb{A}\mathrm{rithmetic}\:\mathbb{W}\mathrm{ay} \\ $$$$\:\:\:\left.\begin{matrix}{{x}\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{5}\right)\:...\left({i}\right)}\\{{x}\:\equiv\:\mathrm{2}\:\left({mod}\:\mathrm{7}\right)....\left({ii}\right)}\\{{x}\equiv\:\:\mathrm{3}\left({mod}\:\mathrm{9}\right).....\left({iii}\right)}\\{{x}\:\equiv\:\mathrm{4}\left(\:{mod}\:\mathrm{11}\right)...\left({iv}\right)}\end{matrix}\right\}\: \\ $$$$\left({i}\right)\Rightarrow{x}=\mathrm{6},\mathrm{11},\mathrm{16},\mathrm{21},... \\ $$$${Each}\:{number}\:{can}\:{be}\:{obtained}\:{by}\: \\ $$$${adding}\:\mathrm{5}\:{in}\:{previous}. \\ $$$${We}\:{can}\:{see}\:{that}\:\mathrm{16}\:{is}\:{also}\:{solution}\:{of} \\ $$$$\left({ii}\right)\left(....{mod}\:\mathrm{7}\right)\: \\ $$$${Any}\:{other}\:{such}\:{number}\left({which}\:{is}\:{common}\right. \\ $$$$\left.{solution}\:{to}\:\left({i}\right)\:\&\:\left({ii}\right)\right)\:{will}\:{be}\:\mathrm{35}\:\left({lcm}\:{of}\right. \\ $$$$\left.\mathrm{5}\:\&\mathrm{7}\right)\:\:{greater}\:{than}\:\mathrm{16}... \\ $$$$\mathrm{16},\mathrm{51},\mathrm{86},\mathrm{121},\mathrm{156},... \\ $$$$\mathrm{156}\:{is}\:{also}\:{solution}\:{of}\:\left({iii}\right)\:\left(...{mod}\:\mathrm{9}\right) \\ $$$${So}\:{next}\:{such}\:{solution}\:{is}\:\mathrm{315}\left(\:{lcm}\left(\mathrm{5},\mathrm{7},\mathrm{9}\right)\:\right) \\ $$$${greater}\:{than}\:\mathrm{156} \\ $$$$\mathrm{156},\mathrm{471},\mathrm{786},\mathrm{1101},\mathrm{1416},\mathrm{1731} \\ $$$$\mathrm{1731}\:{is}\:{also}\:{solution}\:{of}\:\left({iv}\right)\left(....{mod}\:\mathrm{11}\right) \\ $$$${Next}\:{such}\:{number}\:{is}\:{greater}\:{by}\:{any} \\ $$$${multiple}\:{of}\:{lcm}\left(\mathrm{5},\mathrm{7},\mathrm{9},\mathrm{11}\right)=\mathrm{3465}. \\ $$$$\mathrm{1731},\mathrm{5196},\mathrm{8661},... \\ $$

Commented by Rasheed.Sindhi last updated on 22/Aug/19

Sir mr W     I had solved the above problem in   that way sometime ago(At that time I didn′t know  chinese remainder theorm.)The above  method didn′t use algebra..and it′s  my own method.

$${Sir}\:{mr}\:{W}\: \\ $$$$\:\:{I}\:{had}\:{solved}\:{the}\:{above}\:{problem}\:{in}\: \\ $$$${that}\:{way}\:{sometime}\:{ago}\left({At}\:{that}\:{time}\:{I}\:{didn}'{t}\:{know}\right. \\ $$$$\left.{chinese}\:{remainder}\:{theorm}.\right){The}\:{above} \\ $$$${method}\:{didn}'{t}\:{use}\:{algebra}..{and}\:{it}'{s} \\ $$$${my}\:{own}\:{method}. \\ $$

Commented by mr W last updated on 22/Aug/19

Sir Rasheed,   thank you very much for this new  way! i appreciate it!

$${Sir}\:{Rasheed},\: \\ $$$${thank}\:{you}\:{very}\:{much}\:{for}\:{this}\:{new} \\ $$$${way}!\:{i}\:{appreciate}\:{it}! \\ $$

Commented by Rasheed.Sindhi last updated on 22/Aug/19

Thanks A Lot Sir!

$$\mathbb{T}\mathrm{han}\Bbbk\mathrm{s}\:\mathbb{A}\:\mathbb{L}\mathrm{ot}\:\mathbb{S}\mathrm{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com