Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 6686 by FilupSmith last updated on 13/Jul/16

Show that:  ∫_0 ^( ∞) e^(−ix^2 ) dx=((1/2)−(i/2))(√(π/2))

$$\mathrm{Show}\:\mathrm{that}: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} } {dx}=\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{{i}}{\mathrm{2}}\right)\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$

Commented by FilupSmith last updated on 14/Jul/16

Is this correct???  I=∫_0 ^( ∞) e^(−ix^2 ) dx  I^2 =∫_0 ^( ∞) e^(−ix^2 ) dx∫_0 ^( ∞) e^(−iy^2 ) dy  I^2 =∫_0 ^( ∞) ∫_0 ^( ∞) e^(−i(x^2 +y^2 )) dxdy  r^2 =x^2 +y^2 ,  0≤r≤∞  x=rcosθ  y=rsinθ  0≤θ≤π/2  Jacobian J(r, θ)= [((∂x/∂r),(∂x/∂θ)),((∂y/∂r),(∂y/∂θ)) ]  J(r, θ)=(∂x/∂r) (∂y/∂θ)−(∂x/∂θ) (∂y/∂r)  =cosθ×rcosθ+rsinθ×sinθ  =r(cos^2 θ+sin^2 θ)  =r    ∴I^2 =∫_0 ^( (π/2)) ∫_0 ^( ∞) re^(−ir^2 ) drdθ

$$\mathrm{Is}\:\mathrm{this}\:\mathrm{correct}??? \\ $$$${I}=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} } {dx} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\infty} {e}^{−{ix}^{\mathrm{2}} } {dx}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{iy}^{\mathrm{2}} } {dy} \\ $$$${I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} {e}^{−{i}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} {dxdy} \\ $$$${r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} ,\:\:\mathrm{0}\leqslant{r}\leqslant\infty \\ $$$${x}={r}\mathrm{cos}\theta \\ $$$${y}={r}\mathrm{sin}\theta \\ $$$$\mathrm{0}\leqslant\theta\leqslant\pi/\mathrm{2} \\ $$$$\mathrm{Jacobian}\:{J}\left({r},\:\theta\right)=\begin{bmatrix}{\frac{\partial{x}}{\partial{r}}}&{\frac{\partial{x}}{\partial\theta}}\\{\frac{\partial{y}}{\partial{r}}}&{\frac{\partial{y}}{\partial\theta}}\end{bmatrix} \\ $$$${J}\left({r},\:\theta\right)=\frac{\partial{x}}{\partial{r}}\:\frac{\partial{y}}{\partial\theta}−\frac{\partial{x}}{\partial\theta}\:\frac{\partial{y}}{\partial{r}} \\ $$$$=\mathrm{cos}\theta×{r}\mathrm{cos}\theta+{r}\mathrm{sin}\theta×\mathrm{sin}\theta \\ $$$$={r}\left(\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{sin}^{\mathrm{2}} \theta\right) \\ $$$$={r} \\ $$$$ \\ $$$$\therefore{I}^{\mathrm{2}} =\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\:\infty} {re}^{−{ir}^{\mathrm{2}} } {drd}\theta \\ $$

Commented by prakash jain last updated on 14/Jul/16

Limit for θ should be from 0 to π/2  Since limits for x and  y cover complete  quadrant I.

$$\mathrm{Limit}\:\mathrm{for}\:\theta\:\mathrm{should}\:\mathrm{be}\:\mathrm{from}\:\mathrm{0}\:\mathrm{to}\:\pi/\mathrm{2} \\ $$$$\mathrm{Since}\:\mathrm{limits}\:\mathrm{for}\:{x}\:\mathrm{and}\:\:{y}\:\mathrm{cover}\:\mathrm{complete} \\ $$$$\mathrm{quadrant}\:\mathrm{I}. \\ $$

Commented by FilupSmith last updated on 14/Jul/16

Ah, thank you.  Is the jacobian correct?

$$\mathrm{Ah},\:\mathrm{thank}\:\mathrm{you}. \\ $$$$\mathrm{Is}\:\mathrm{the}\:\mathrm{jacobian}\:\mathrm{correct}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com