Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 66866 by rajesh4661kumar@gmail.com last updated on 20/Aug/19

Commented by mathmax by abdo last updated on 20/Aug/19

first  x+(√(1+x^2 ))>0  for all x so y=ln(x+(√(1+x^2 )))=argsh(x) ⇒  y^′ (x)=(1/(√(1+x^2 ))) =(1+x^2 )^(−(1/2))  ⇒y^(′′) (x)=−(1/2)(2x)(1+x^2 )^(−(3/2))   =((−x)/((1+x^2 )^(3/2) )) ⇒(x^2 +1)y^(′′)  +xy′=(x^2  +1)((−x)/((1+x^2 )^(3/2) )) +(x/(√(1+x^2 )))  =((−x)/(√(1+x^2 )))+(x/(√(1+x^2 ))) =0   so the Q must be  (x^2 +1)y^(′′)  +xy^′ =0

firstx+1+x2>0forallxsoy=ln(x+1+x2)=argsh(x)y(x)=11+x2=(1+x2)12y(x)=12(2x)(1+x2)32=x(1+x2)32(x2+1)y+xy=(x2+1)x(1+x2)32+x1+x2=x1+x2+x1+x2=0sotheQmustbe(x2+1)y+xy=0

Answered by Kunal12588 last updated on 20/Aug/19

y=log(x+(√(x^2 +1)))  ⇒y′=(1/(x+(√(x^2 +1))))×(1+((2x)/(2(√(x^2 +1)))))  ⇒y′=(1/(x+(√(x^2 +1))))×(((x+(√(x^2 +1)))/(√(x^2 +1))))  ⇒y′=(1/(√(x^2 +1)))  ⇒y′(√(x^2 +1))=1  ⇒(√(x^2 +1))×y′′+y′×((2x)/(2(√(x^2 +1))))=0  ⇒(x^2 +1)y′′+xy′=0

y=log(x+x2+1)y=1x+x2+1×(1+2x2x2+1)y=1x+x2+1×(x+x2+1x2+1)y=1x2+1yx2+1=1x2+1×y+y×2x2x2+1=0(x2+1)y+xy=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com