Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67023 by mathmax by abdo last updated on 21/Aug/19

find the sequence U_n  wich verify  U_n +U_(n+1) =sin(n)  ∀n from n

findthesequenceUnwichverifyUn+Un+1=sin(n)nfromn

Commented by mathmax by abdo last updated on 23/Aug/19

we have u_n  +u_(n+1) =sin(n) ⇒Σ_(k=0) ^(n−1) (u_k  +u_(k+1) )(−1)^k =Σ_(k=0) ^n (−1)^k sin(k)  ⇒u_0 +u_1 −u_1 −u_2 +u_2  +u_3 +....+(−1)^(n−1) (u_(n−1)  +u_n )  =Σ_(k=0) ^n (−1)^k  sin(k) ⇒u_0 +(−1)^(n−1) u_n =Σ_(k=0) ^n (−1)^k sin(k) ⇒  u_0 −Σ_(k=0) ^n (−1)^k sin(k) =(−1)^n  u_n  ⇒u_n =(−1)^n u_0  −(−1)^n Σ_(k=0) ^n (−1)^k sin(k)  let find  w_n =Σ_(k=0) ^n (−1)^k sin)k)  w_n =Im(Σ_(k=0) ^n (−1)^k e^(ik) ) =Im(Σ_(k=0) ^n (−e^i )^k )  and Σ_(k=0) ^n (−e^i )^k  =((1−(−e^i )^(n+1) )/(1+e^i )) =((1+(−1)^n e^(i(n+1)) )/(1+e^i ))  =((1+(−1)^n e^(i(n+1)) )/(1+cos(1)+isin(1))) =(((1+cos(1)−isin(1))(1+(−1)^n e^(i(n+1)) ))/((1+cos(1))^2 +sin^2 1))  =(((1+cos(1)−isin(1))(1+(−1)^n cos(n+1)+i(−1)^n sin(n+1)))/((1+cos(1))^2  +sin^2 1))  =(((1+cos(1))(1+(−1)^n cos(n+1))+i(−1)^n sin(n+1)(1+cos(1))−isin(1)(1+(−1)^n cos(n+1))+....)/((1+cos(1))^2  +sin^2 (1)))  ⇒w_n =(((−1)^n sin(n+1)(1+cos(1))−sin(1)(1+(−1)^n cos)n+1)))/(2+2cos(1) ))  ⇒u_n =(−1)^n u_0 −(−1)^n w_n

wehaveun+un+1=sin(n)k=0n1(uk+uk+1)(1)k=k=0n(1)ksin(k)u0+u1u1u2+u2+u3+....+(1)n1(un1+un)=k=0n(1)ksin(k)u0+(1)n1un=k=0n(1)ksin(k)u0k=0n(1)ksin(k)=(1)nunun=(1)nu0(1)nk=0n(1)ksin(k)letfindwn=k=0n(1)ksin)k)wn=Im(k=0n(1)keik)=Im(k=0n(ei)k)andk=0n(ei)k=1(ei)n+11+ei=1+(1)nei(n+1)1+ei=1+(1)nei(n+1)1+cos(1)+isin(1)=(1+cos(1)isin(1))(1+(1)nei(n+1))(1+cos(1))2+sin21=(1+cos(1)isin(1))(1+(1)ncos(n+1)+i(1)nsin(n+1))(1+cos(1))2+sin21=(1+cos(1))(1+(1)ncos(n+1))+i(1)nsin(n+1)(1+cos(1))isin(1)(1+(1)ncos(n+1))+....(1+cos(1))2+sin2(1)wn=(1)nsin(n+1)(1+cos(1))sin(1)(1+(1)ncos)n+1))2+2cos(1)un=(1)nu0(1)nwn

Answered by mind is power last updated on 23/Aug/19

let v_(n+1) +v_n =cos(n)  and Zn=v_n +iu_n   z_(n+1) +z_n =cos(n)+isin(n)=e^(in)   ==>(z_(n+1) /e^(i(n)) )+(z_n /e^(in) )=1=e^i (z_(n+1) /e^(i(n+1)) )+(Z_n /e^(in) )=1  let W_n =(z_n /e^(in) )===>e^i W_(n+1) +Wn=1  eix+1=0==>x=−(1/e^(ix) )=−e^(−ix)   W_n =c(−1)^n e^(−inx) +t_n   withe tn particular solution of e^i t_(n+1) +t_n =1  let t_n =an+b==>e^i (an+a+b)+an+b=1  ∀n∈IN  ==>an(e^i +1)=0  and b(e^i +1)=1==>a=0and b=(1/(1+e^i ))  ==>t_n =(1/(1+e^i ))  W_n =(−1)^n ce^(−in) +(( 1)/(1+e^i )).c∈IC.  ==>Z_n =e^(in) W_n =c(−1)^n +(e^(in) /(1+e^i ))=c(−1)^n +((e^(in) +e^(i(n−1)) )/(2+2cos(1)))  u_n =IM(Z_n )=k(−1)^n +(1/(2+2cos(1)))[sin(n)+sin(n−1)]  sin(a)+sin(b)=2cos(((a−b)/2))sin(((a+b)/2)).and 2+2cos(1)=2+2cos(2.(1/2))=4cos^2 ((1/2))  we find u_n =k(−1)^n +((2cos((1/2))sin(n−(1/2)))/(4cos^2 ((1/2))))=k(−1)^n +((sin(n−(1/2)))/(2cos((1/2))))

letvn+1+vn=cos(n)andZn=vn+iunzn+1+zn=cos(n)+isin(n)=ein==>zn+1ei(n)+znein=1=eizn+1ei(n+1)+Znein=1letWn=znein===>eiWn+1+Wn=1eix+1=0==>x=1eix=eixWn=c(1)neinx+tnwithetnparticularsolutionofeitn+1+tn=1lettn=an+b==>ei(an+a+b)+an+b=1nIN==>an(ei+1)=0andb(ei+1)=1==>a=0andb=11+ei==>tn=11+eiWn=(1)ncein+11+ei.cIC.==>Zn=einWn=c(1)n+ein1+ei=c(1)n+ein+ei(n1)2+2cos(1)un=IM(Zn)=k(1)n+12+2cos(1)[sin(n)+sin(n1)]sin(a)+sin(b)=2cos(ab2)sin(a+b2).and2+2cos(1)=2+2cos(2.12)=4cos2(12)wefindun=k(1)n+2cos(12)sin(n12)4cos2(12)=k(1)n+sin(n12)2cos(12)

Commented by mathmax by abdo last updated on 23/Aug/19

thank you sir.

thankyousir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com