Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67035 by rajesh4661kumar@gmail.com last updated on 22/Aug/19

Commented by rajesh4661kumar@gmail.com last updated on 22/Aug/19

solve please argent hai

solvepleaseargenthai

Commented by mathmax by abdo last updated on 22/Aug/19

let I =∫  (dx/(x^4 −x^2  +1)) ⇒I =∫   (dx/((x^2 +1)^2 −3x^2 ))=∫  (dx/((x^2 +1−(√3)x)(x^2 +1+(√3)x)))  let decompose F(x)=(1/((x^2 −(√3)x +1)(x^2 +(√3)x +1))) ⇒  F(x)=((ax+b)/(x^2 −(√3)x +1)) +((cx+d)/(x^2  +(√3)x +1))  F(−x)=F(x) ⇒ ((−ax+b)/(x^2 +(√3)x+1)) +((−cx+d)/(x^2 −(√3)x +1)) =F(x) ⇒c=−a and b=d  ⇒F(x) =((ax+b)/(x^2 −(√3)x +1)) +((−ax +b)/(x^2  +(√3)x +1))  F(0) =1 =2b ⇒b=(1/2)  F(1) =((a+b)/(2−(√3))) +((−a+b)/(2+(√3))) =1 ⇒(2+(√3))(a+(1/2))+(2−(√3))(−a+(1/2))=1⇒  ⇒(2+(√3))a +((2+(√3))/2) −(2−(√3))a +((2−(√3))/2) =1 ⇒  2(√3)a  +2 =1 ⇒2(√3)a =−1 ⇒ a =−(1/(2(√3))) ⇒  F(x) =(1/2) ((−(1/(√3))x+1)/(x^2 −(√3)x+1)) +(1/2)(((1/((√3) ))x+1)/(x^2 +(√3)x +1)) ⇒  ∫ F(x)dx =(1/(2(√3))) ∫ ((x+(√3))/(x^2  +(√3)x +1))−(1/(2(√3))) ∫   ((x−(√3))/(x^2 −(√3)x+1)) =H−K  H=∫  ((x+(√3))/(x^2  +(√3)x +1)) =(1/2) ∫  ((2x+2(√3))/(x^2  +(√3)x +1)) =(1/2)ln(x^2  +(√3)x +1)+((√3)/2)∫(dx/(x^2  +(√3)x +1))  ∫   (dx/(x^2  +(√3)x +1)) =∫    (dx/(x^2  +2((√3)/2)x +(3/4) +1−(3/4))) =∫   (dx/((x+((√3)/2))^2  +(1/4)))  =_(x+((√3)/2)=(t/2))     4∫  (1/(t^2  +1)) (dt/2) =2 arctan(2x+(√3)) ⇒  H =(1/(2(√3)))×(1/2)ln(x^2  +(√3)x +1)+(1/(2(√3)))×((√3)/2) ×2 arctan(2x+(√3))  =(1/(4(√3)))ln(x^2  +(√3)x +1)+(1/2) arctan(2x+(√3))  K=(1/(2(√3)))∫  ((x−(√3))/(x^2 −(√3)x+1)) dx =_(x =−t) (1/(2(√3)))   ∫ ((−t−(√3))/(t^2 +(√3)t +1))(−dt) =(1/(2(√3)))∫   ((t+(√3))/(t^2 +(√3)t +1))dt  =(1/(4(√3)))ln(x^2 −(√3)x+1)+(1/2)arctan(−2x+(√3)) ⇒  I =(1/(4(√3)))ln(x^2  +(√3)x+1)+(1/2) arctan(2x+(√3))  −(1/(4(√3)))ln(x^2 −(√3)x+1)+(1/2) arctan(2x−(√3)) +C  I=(1/(4(√3)))ln(((x^2 +(√3)x +1)/(x^2 −(√3)x +1))) +(1/2){ arctan(2x+(√3)) +arctan(2x−(√3))} +C

letI=dxx4x2+1I=dx(x2+1)23x2=dx(x2+13x)(x2+1+3x)letdecomposeF(x)=1(x23x+1)(x2+3x+1)F(x)=ax+bx23x+1+cx+dx2+3x+1F(x)=F(x)ax+bx2+3x+1+cx+dx23x+1=F(x)c=aandb=dF(x)=ax+bx23x+1+ax+bx2+3x+1F(0)=1=2bb=12F(1)=a+b23+a+b2+3=1(2+3)(a+12)+(23)(a+12)=1(2+3)a+2+32(23)a+232=123a+2=123a=1a=123F(x)=1213x+1x23x+1+1213x+1x2+3x+1F(x)dx=123x+3x2+3x+1123x3x23x+1=HKH=x+3x2+3x+1=122x+23x2+3x+1=12ln(x2+3x+1)+32dxx2+3x+1dxx2+3x+1=dxx2+232x+34+134=dx(x+32)2+14=x+32=t241t2+1dt2=2arctan(2x+3)H=123×12ln(x2+3x+1)+123×32×2arctan(2x+3)=143ln(x2+3x+1)+12arctan(2x+3)K=123x3x23x+1dx=x=t123t3t2+3t+1(dt)=123t+3t2+3t+1dt=143ln(x23x+1)+12arctan(2x+3)I=143ln(x2+3x+1)+12arctan(2x+3)143ln(x23x+1)+12arctan(2x3)+CI=143ln(x2+3x+1x23x+1)+12{arctan(2x+3)+arctan(2x3)}+C

Answered by Tanmay chaudhury last updated on 22/Aug/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com