Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67038 by mathmax by abdo last updated on 22/Aug/19

calculate  ∫_(−1) ^1  (x^(2n) /(1+2^(sinx) ))dx   with n integr.

$${calculate}\:\:\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sinx}} }{dx}\:\:\:{with}\:{n}\:{integr}. \\ $$

Commented by mathmax by abdo last updated on 22/Aug/19

let A_n =∫_(−1) ^1  (x^(2n) /(1+2^(sinx) ))dx ⇒ A_n =∫_(−1) ^0  (x^(2n) /(1+2^(sinx) ))dx +∫_0 ^1  (x^(2n) /(1+2^(sinx) ))dx but  ∫_(−1) ^0  (x^(2n) /(1+2^(sinx) ))dx =_(x=−t)  ∫_0 ^1  (t^(2n) /(1+2^(−sint) ))dt =∫_0 ^1  ((2^(sint)  t^(2n) )/(2^(sint)  +1))dt ⇒  A_n =∫_0 ^1   (((2^(sint)  t^(2n) )/(1+2^(sint) )) +(t^(2n) /(1+2^(sint) )))dt =∫_0 ^1 t^(2n) (((1+2^(sint) )/(1+2^(sint) )))dt =∫_0 ^1  t^(2n)  dt  [(t^(2n+1) /(2n+1))]_0 ^1  =(1/(2n+1)) ⇒ ★A_n =(1/(2n+1)) ★

$${let}\:{A}_{{n}} =\int_{−\mathrm{1}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sinx}} }{dx}\:\Rightarrow\:{A}_{{n}} =\int_{−\mathrm{1}} ^{\mathrm{0}} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sinx}} }{dx}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sinx}} }{dx}\:{but} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{0}} \:\frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sinx}} }{dx}\:=_{{x}=−{t}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{−{sint}} }{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}^{{sint}} \:{t}^{\mathrm{2}{n}} }{\mathrm{2}^{{sint}} \:+\mathrm{1}}{dt}\:\Rightarrow \\ $$$${A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\frac{\mathrm{2}^{{sint}} \:{t}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sint}} }\:+\frac{{t}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sint}} }\right){dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{2}{n}} \left(\frac{\mathrm{1}+\mathrm{2}^{{sint}} }{\mathrm{1}+\mathrm{2}^{{sint}} }\right){dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{t}^{\mathrm{2}{n}} \:{dt} \\ $$$$\left[\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:\Rightarrow\:\bigstar{A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}\:\bigstar \\ $$

Answered by mind is power last updated on 22/Aug/19

∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) ))dx=∫_(−1) ^1 (((−x)^(2n) )/(1+2^(sin(−x)) ))dx=∫_(−1) ^1 (x^(2n) /(1+2^(−sin(x)) ))dx=∫_(−1) ^1 ((2^(sin(x)) x^(2n) )/(1+2^(son(x)) ))  ==>2∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) )) dx=∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) ))dx+∫_(−1) ^1 ((x^(2n) 2^(sin(x{) )/(1+2^(sin(x)) ))dx=∫_(−1) ^1 ((x^(2n) +x^(2n) 2^(sin(x))   )/(1+2^(sin(x)) ))=∫_(−1) ^1 x^(2n) dx=(2/(2n+1))  =>∫_(−1) ^1 (x^(2n) /(1+2^(sin(x)) ))dx=(1/(2n+1))

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sin}\left({x}\right)} }{dx}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\left(−{x}\right)^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sin}\left(−{x}\right)} }{dx}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{−{sin}\left({x}\right)} }{dx}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\mathrm{2}^{{sin}\left({x}\right)} {x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{son}\left({x}\right)} } \\ $$$$==>\mathrm{2}\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sin}\left({x}\right)} }\:{dx}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sin}\left({x}\right)} }{dx}+\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} \mathrm{2}^{{sin}\left({x}\left\{\right.\right.} }{\mathrm{1}+\mathrm{2}^{{sin}\left({x}\right)} }{dx}=\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} +{x}^{\mathrm{2}{n}} \mathrm{2}^{{sin}\left({x}\right)} \:\:}{\mathrm{1}+\mathrm{2}^{{sin}\left({x}\right)} }=\int_{−\mathrm{1}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {dx}=\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=>\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\mathrm{1}+\mathrm{2}^{{sin}\left({x}\right)} }{dx}=\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 22/Aug/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented by mind is power last updated on 23/Aug/19

y′re welcom

$${y}'{re}\:{welcom} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com