Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 6716 by Tawakalitu. last updated on 15/Jul/16

Prove that the locus of a point which moves its distance from   the point (−b, 0) is p times its distance from the point (b, 0) is                          (p^2  − 1)(x^2  + y^2  + b^2 ) − 2b(p^2  + 1)x = 0  Show that this locus is a circle and find its radius.

$${Prove}\:{that}\:{the}\:{locus}\:{of}\:{a}\:{point}\:{which}\:{moves}\:{its}\:{distance}\:{from}\: \\ $$$${the}\:{point}\:\left(−{b},\:\mathrm{0}\right)\:{is}\:{p}\:{times}\:{its}\:{distance}\:{from}\:{the}\:{point}\:\left({b},\:\mathrm{0}\right)\:{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({p}^{\mathrm{2}} \:−\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \right)\:−\:\mathrm{2}{b}\left({p}^{\mathrm{2}} \:+\:\mathrm{1}\right){x}\:=\:\mathrm{0} \\ $$$${Show}\:{that}\:{this}\:{locus}\:{is}\:{a}\:{circle}\:{and}\:{find}\:{its}\:{radius}. \\ $$

Answered by Yozzii last updated on 16/Jul/16

Let points P, A and B have coordinates (x,y),(−b,0)   and (b,0) respectively.  The information gives ∣PA∣=p∣PB∣ where p>0.  ∣PA∣=(√((x+b)^2 +y^2 )) and ∣PB∣=(√((x−b)^2 +y^2 )).  ∴(√((x+b)^2 +y^2 ))=p(√((x−b)^2 +y^2 ))  ⇒((√((x+b)^2 +y^2 )))^2 =(p(√((x−b)^2 +y^2 )))^2   (x+b)^2 +y^2 =p^2 (x−b)^2 +p^2 y^2   x^2 +2bx+b^2 +y^2 =p^2 x^2 −2p^2 bx+p^2 b^2 +p^2 y^2   (p^2 −1)x^2 +(p^2 −1)y^2 +(p^2 −1)b^2 −2bx(1+p^2 )=0  (p^2 −1)(x^2 +y^2 +b^2 )−2b(p^2 +1)x=0....(1)  Equation (1) represents the locus of P  in rectangular coordinates.   −−−−−−−−−−−−−−−−−−−−−−−−  If p≠±1, we can rewrite (1) as  x^2 +y^2 +b^2 −2(((b(p^2 +1))/(p^2 −1)))x=0  x^2 −2(((b(p^2 +1))/(p^2 −1)))x+(((b(p^2 +1))/(p^2 −1)))^2 −(((b(p^2 +1))/(p^2 −1)))^2 +(y−0)^2 =0  (x−((b(p^2 +1))/(p^2 −1)))^2 +(y−0)^2 =(((b(p^2 +1))/(p^2 −1)))^2   ⇒(√((x−((b(p^2 +1))/(p^2 −1)))^2 +(y−0)^2 ))=∣(b/(p^2 −1))∣(p^2 +1)....(2)  The form of (2) implies that the distance  between P(x,y) and the fixed point (((b(p^2 +1))/(p^2 −1)),0)  is always constant as P moves and b,p are  constants. Hence, the locus of P is a  circle and its radius is ∣(b/(p^2 −1))∣(p^2 +1).

$${Let}\:{points}\:{P},\:{A}\:{and}\:{B}\:{have}\:{coordinates}\:\left({x},{y}\right),\left(−{b},\mathrm{0}\right)\: \\ $$$${and}\:\left({b},\mathrm{0}\right)\:{respectively}. \\ $$$${The}\:{information}\:{gives}\:\mid{PA}\mid={p}\mid{PB}\mid\:{where}\:{p}>\mathrm{0}. \\ $$$$\mid{PA}\mid=\sqrt{\left({x}+{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:{and}\:\mid{PB}\mid=\sqrt{\left({x}−{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }. \\ $$$$\therefore\sqrt{\left({x}+{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }={p}\sqrt{\left({x}−{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$\Rightarrow\left(\sqrt{\left({x}+{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)^{\mathrm{2}} =\left({p}\sqrt{\left({x}−{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$\left({x}+{b}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={p}^{\mathrm{2}} \left({x}−{b}\right)^{\mathrm{2}} +{p}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{bx}+{b}^{\mathrm{2}} +{y}^{\mathrm{2}} ={p}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} {bx}+{p}^{\mathrm{2}} {b}^{\mathrm{2}} +{p}^{\mathrm{2}} {y}^{\mathrm{2}} \\ $$$$\left({p}^{\mathrm{2}} −\mathrm{1}\right){x}^{\mathrm{2}} +\left({p}^{\mathrm{2}} −\mathrm{1}\right){y}^{\mathrm{2}} +\left({p}^{\mathrm{2}} −\mathrm{1}\right){b}^{\mathrm{2}} −\mathrm{2}{bx}\left(\mathrm{1}+{p}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left({p}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\mathrm{2}{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right){x}=\mathrm{0}....\left(\mathrm{1}\right) \\ $$$${Equation}\:\left(\mathrm{1}\right)\:{represents}\:{the}\:{locus}\:{of}\:{P} \\ $$$${in}\:{rectangular}\:{coordinates}.\: \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${If}\:{p}\neq\pm\mathrm{1},\:{we}\:{can}\:{rewrite}\:\left(\mathrm{1}\right)\:{as} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}\left(\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right){x}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}\left(\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right){x}+\left(\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} −\left(\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\left({y}−\mathrm{0}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}−\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\left({y}−\mathrm{0}\right)^{\mathrm{2}} =\left(\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\sqrt{\left({x}−\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\left({y}−\mathrm{0}\right)^{\mathrm{2}} }=\mid\frac{{b}}{{p}^{\mathrm{2}} −\mathrm{1}}\mid\left({p}^{\mathrm{2}} +\mathrm{1}\right)....\left(\mathrm{2}\right) \\ $$$${The}\:{form}\:{of}\:\left(\mathrm{2}\right)\:{implies}\:{that}\:{the}\:{distance} \\ $$$${between}\:{P}\left({x},{y}\right)\:{and}\:{the}\:{fixed}\:{point}\:\left(\frac{{b}\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{2}} −\mathrm{1}},\mathrm{0}\right) \\ $$$${is}\:{always}\:{constant}\:{as}\:{P}\:{moves}\:{and}\:{b},{p}\:{are} \\ $$$${constants}.\:{Hence},\:{the}\:{locus}\:{of}\:{P}\:{is}\:{a} \\ $$$${circle}\:{and}\:{its}\:{radius}\:{is}\:\mid\frac{{b}}{{p}^{\mathrm{2}} −\mathrm{1}}\mid\left({p}^{\mathrm{2}} +\mathrm{1}\right). \\ $$$$ \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 16/Jul/16

Wow great. thanks

$${Wow}\:{great}.\:{thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com