Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67236 by prof Abdo imad last updated on 24/Aug/19

let T_n =cos(narccosx)  1) calculste T_0 ,T_1 ,T_2   2)find  roots of T_n   3)decompose  the fraction F =(1/T_n )

$${let}\:{T}_{{n}} ={cos}\left({narccosx}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{T}_{\mathrm{0}} ,{T}_{\mathrm{1}} ,{T}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:\:{roots}\:{of}\:{T}_{{n}} \\ $$$$\left.\mathrm{3}\right){decompose}\:\:{the}\:{fraction}\:{F}\:=\frac{\mathrm{1}}{{T}_{{n}} } \\ $$

Commented by mathmax by abdo last updated on 25/Aug/19

1) T_0 =cos(0)=1  T_1 (x) =cos(arcosx)=x  T_2 (x) =cos(2 arcosx) =2x^2 −1   wecan prove that T_n is a polynom  with degT_n =n  2) T_n (x)=0 ⇔cos(narcosx)=0 ⇔narcosx =(π/2)+kπ  k∈Z ⇔  arccosx =(π/(2n)) +((kπ)/n) ⇒ x_k =cos((π/(2n)) +((kπ)/n))  with k∈[[0,n−1]]  3) we have T_n (x) =a Π_(k=0) ^(n−1) (x−x_k )   with a is thedominent  coefficient of T_n  ⇒(1/(T_n (x))) =(1/(aΠ_(k=0) ^(n−1) (x−x_k )))  =Σ_(k=0) ^(n−1)   (λ_k /(x−x_k ))    and  λ_k =(1/(T^′ (x_k )))   we have   T^′ (x) =a Σ_(k=0) ^(n−1)  Π_(j_(j≠k) =0) ^(n−1) (x−x_j ) ⇒  T^′ (x_k ) =a Σ_(k=0) ^(n−1)  Π_(j=0_(j≠k) ) ^(n−1)    (x_k −x_j )

$$\left.\mathrm{1}\right)\:{T}_{\mathrm{0}} ={cos}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${T}_{\mathrm{1}} \left({x}\right)\:={cos}\left({arcosx}\right)={x} \\ $$$${T}_{\mathrm{2}} \left({x}\right)\:={cos}\left(\mathrm{2}\:{arcosx}\right)\:=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}\:\:\:{wecan}\:{prove}\:{that}\:{T}_{{n}} {is}\:{a}\:{polynom} \\ $$$${with}\:{degT}_{{n}} ={n} \\ $$$$\left.\mathrm{2}\right)\:{T}_{{n}} \left({x}\right)=\mathrm{0}\:\Leftrightarrow{cos}\left({narcosx}\right)=\mathrm{0}\:\Leftrightarrow{narcosx}\:=\frac{\pi}{\mathrm{2}}+{k}\pi\:\:{k}\in{Z}\:\Leftrightarrow \\ $$$${arccosx}\:=\frac{\pi}{\mathrm{2}{n}}\:+\frac{{k}\pi}{{n}}\:\Rightarrow\:{x}_{{k}} ={cos}\left(\frac{\pi}{\mathrm{2}{n}}\:+\frac{{k}\pi}{{n}}\right)\:\:{with}\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$$$\left.\mathrm{3}\right)\:{we}\:{have}\:{T}_{{n}} \left({x}\right)\:={a}\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{x}_{{k}} \right)\:\:\:{with}\:{a}\:{is}\:{thedominent} \\ $$$${coefficient}\:{of}\:{T}_{{n}} \:\Rightarrow\frac{\mathrm{1}}{{T}_{{n}} \left({x}\right)}\:=\frac{\mathrm{1}}{{a}\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{x}_{{k}} \right)} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{x}−{x}_{{k}} }\:\:\:\:{and}\:\:\lambda_{{k}} =\frac{\mathrm{1}}{{T}\:^{'} \left({x}_{{k}} \right)}\:\:\:{we}\:{have}\: \\ $$$${T}\:^{'} \left({x}\right)\:={a}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\prod_{{j}_{{j}\neq{k}} =\mathrm{0}} ^{{n}−\mathrm{1}} \left({x}−{x}_{{j}} \right)\:\Rightarrow \\ $$$${T}\:^{'} \left({x}_{{k}} \right)\:={a}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\prod_{{j}=\mathrm{0}_{{j}\neq{k}} } ^{{n}−\mathrm{1}} \:\:\:\left({x}_{{k}} −{x}_{{j}} \right) \\ $$

Answered by mind is power last updated on 24/Aug/19

T_0 =cos(0)=1 T_1 =cos(arcos(x))=x  T_2 =cos(2arcos(x))=2cos^2 (arcos(x))−1=2x^2 −1  T_n =0⇒cos(narcos(x))=0⇒n arcos(x)=(π/2)+2kπ withe   arcos(x)={(1/(2n))+((2k)/n)}π  ⇒ (1/(2n))+((2k)/n)≤1⇒1+4k≤2n⇒k≤((2n−1)/4)  k∈{0,1,     E(((2n−1)/4))}  or narcos(x)=−(π/2)+2kπ⇒(−(1/(2n))+((2k)/n))π≤π  ⇒4k≤2n+1⇒k≤((2n+1)/4)  solution ar cos(((1+4k)/(2n))π)withe k≤E(((2n−1)/4)).and cos(((4k−1)/(2n))π).k≤E(((2n+1u)/4))  Tn=∐_(k=0) ^(E(((2n−1)/4))) (x−cos(((1+4k)/(2n))π))Π_(k=0) ^(E(((2n+1)/4))) (x−cos(((4k−1)/(2n))π))  (1/(Tn))=Σ_(k=0) ^(E(((2n−1)/4))) (a_k /((x−cos(((1+4k)/(2n))π))))+Σ_(k=0) ^(E(((2n+1)/4))) (a_k /((x−cos(((4k−1)/(2n))π)))  a_k =∐_(j=0.j≠k) ^(E(((2n−1)/4))) (x−cos(((1+4j)/(2n))π))Π_(j=0.j#k) ^(E(((2n+1)/4))) (x−cos(((4j−1)/(2n))π))

$${T}_{\mathrm{0}} ={cos}\left(\mathrm{0}\right)=\mathrm{1}\:{T}_{\mathrm{1}} ={cos}\left({arcos}\left({x}\right)\right)={x} \\ $$$${T}_{\mathrm{2}} ={cos}\left(\mathrm{2}{arcos}\left({x}\right)\right)=\mathrm{2}{cos}^{\mathrm{2}} \left({arcos}\left({x}\right)\right)−\mathrm{1}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${T}_{{n}} =\mathrm{0}\Rightarrow{cos}\left({narcos}\left({x}\right)\right)=\mathrm{0}\Rightarrow{n}\:{arcos}\left({x}\right)=\frac{\pi}{\mathrm{2}}+\mathrm{2}{k}\pi\:{withe}\: \\ $$$${arcos}\left({x}\right)=\left\{\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{2}{k}}{{n}}\right\}\pi \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{2}{k}}{{n}}\leqslant\mathrm{1}\Rightarrow\mathrm{1}+\mathrm{4}{k}\leqslant\mathrm{2}{n}\Rightarrow{k}\leqslant\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{4}} \\ $$$${k}\in\left\{\mathrm{0},\mathrm{1},\:\:\:\:\:{E}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{4}}\right)\right\} \\ $$$${or}\:{narcos}\left({x}\right)=−\frac{\pi}{\mathrm{2}}+\mathrm{2}{k}\pi\Rightarrow\left(−\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{2}{k}}{{n}}\right)\pi\leqslant\pi \\ $$$$\Rightarrow\mathrm{4}{k}\leqslant\mathrm{2}{n}+\mathrm{1}\Rightarrow{k}\leqslant\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{4}} \\ $$$${solution}\:{ar}\:{cos}\left(\frac{\mathrm{1}+\mathrm{4}{k}}{\mathrm{2}{n}}\pi\right){withe}\:{k}\leqslant{E}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{4}}\right).{and}\:{cos}\left(\frac{\mathrm{4}{k}−\mathrm{1}}{\mathrm{2}{n}}\pi\right).{k}\leqslant{E}\left(\frac{\mathrm{2}{n}+\mathrm{1}{u}}{\mathrm{4}}\right) \\ $$$${Tn}=\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{4}}\right)} {\coprod}}\left({x}−{cos}\left(\frac{\mathrm{1}+\mathrm{4}{k}}{\mathrm{2}{n}}\pi\right)\right)\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{4}}\right)} {\prod}}\left({x}−{cos}\left(\frac{\mathrm{4}{k}−\mathrm{1}}{\mathrm{2}{n}}\pi\right)\right) \\ $$$$\frac{\mathrm{1}}{{Tn}}=\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{4}}\right)} {\sum}}\frac{{a}_{{k}} }{\left({x}−{cos}\left(\frac{\mathrm{1}+\mathrm{4}{k}}{\mathrm{2}{n}}\pi\right)\right)}+\underset{{k}=\mathrm{0}} {\overset{{E}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{4}}\right)} {\sum}}\frac{{a}_{{k}} }{\left({x}−{cos}\left(\frac{\mathrm{4}{k}−\mathrm{1}}{\mathrm{2}{n}}\pi\right)\right.} \\ $$$${a}_{{k}} =\underset{{j}=\mathrm{0}.{j}\neq{k}} {\overset{{E}\left(\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{4}}\right)} {\coprod}}\left({x}−{cos}\left(\frac{\mathrm{1}+\mathrm{4}{j}}{\mathrm{2}{n}}\pi\right)\right)\underset{{j}=\mathrm{0}.{j}#{k}} {\overset{{E}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{4}}\right)} {\prod}}\left({x}−{cos}\left(\frac{\mathrm{4}{j}−\mathrm{1}}{\mathrm{2}{n}}\pi\right)\right) \\ $$$$ \\ $$$$ \\ $$

Commented by Kunal12588 last updated on 24/Aug/19

thanks sir for this answer  can you please replace ==> with ⇒ . Thank you

$${thanks}\:{sir}\:{for}\:{this}\:{answer} \\ $$$${can}\:{you}\:{please}\:{replace}\:==>\:{with}\:\Rightarrow\:.\:{Thank}\:{you} \\ $$

Commented by mind is power last updated on 24/Aug/19

ok wothe pleasur

$${ok}\:{wothe}\:{pleasur} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com