Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67379 by mathmax by abdo last updated on 26/Aug/19

let  f(x) =e^(−∣x∣)       2π  periodic even  developp f at fourier serie

$${let}\:\:{f}\left({x}\right)\:={e}^{−\mid{x}\mid} \:\:\:\:\:\:\mathrm{2}\pi\:\:{periodic}\:{even} \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$

Commented by Abdo msup. last updated on 28/Aug/19

f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  with  a_n =(2/T) ∫_([T])   f(x)cos(nx)dx=(2/(2π)) ∫_(−π) ^π e^(−∣x∣)  cos(nx)dx  =(2/π) ∫_0 ^π    e^(−x)  cos(nx)dx ⇒(π/2) a_n = ∫_0 ^π  e^(−x)  cos(nx)dx  =Re( ∫_0 ^π  e^(−x+inx) dx) =Re(∫_0 ^π  e^((−1+in)x) dx)  but ∫_0 ^π  e^((−1+in)x) dx =[(1/(−1+in)) e^((−1+in)x) ]_0 ^π   =−(1/(1−in)){ e^((−1+in)π) −1}  =−((1+in)/(1+n^2 )){ e^(−π) (−1)^n −1) =((1−(−1)^n e^(−π) )/(1+n^2 ))(1+in) ⇒  (π/2)a_n =((1−(−1)^n e^(−π) )/(1+n^2 )) ⇒a_n =((2{1−(−1)^n e^(−π) )/(π(1+n^2 )))

$${f}\left({x}\right)=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right)\:\:{with} \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{{T}}\:\int_{\left[{T}\right]} \:\:{f}\left({x}\right){cos}\left({nx}\right){dx}=\frac{\mathrm{2}}{\mathrm{2}\pi}\:\int_{−\pi} ^{\pi} {e}^{−\mid{x}\mid} \:{cos}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:\:\:{e}^{−{x}} \:{cos}\left({nx}\right){dx}\:\Rightarrow\frac{\pi}{\mathrm{2}}\:{a}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:{e}^{−{x}} \:{cos}\left({nx}\right){dx} \\ $$$$={Re}\left(\:\int_{\mathrm{0}} ^{\pi} \:{e}^{−{x}+{inx}} {dx}\right)\:={Re}\left(\int_{\mathrm{0}} ^{\pi} \:{e}^{\left(−\mathrm{1}+{in}\right){x}} {dx}\right) \\ $$$${but}\:\int_{\mathrm{0}} ^{\pi} \:{e}^{\left(−\mathrm{1}+{in}\right){x}} {dx}\:=\left[\frac{\mathrm{1}}{−\mathrm{1}+{in}}\:{e}^{\left(−\mathrm{1}+{in}\right){x}} \right]_{\mathrm{0}} ^{\pi} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{1}−{in}}\left\{\:{e}^{\left(−\mathrm{1}+{in}\right)\pi} −\mathrm{1}\right\} \\ $$$$=−\frac{\mathrm{1}+{in}}{\mathrm{1}+{n}^{\mathrm{2}} }\left\{\:{e}^{−\pi} \left(−\mathrm{1}\right)^{{n}} −\mathrm{1}\right)\:=\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} {e}^{−\pi} }{\mathrm{1}+{n}^{\mathrm{2}} }\left(\mathrm{1}+{in}\right)\:\Rightarrow \\ $$$$\frac{\pi}{\mathrm{2}}{a}_{{n}} =\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} {e}^{−\pi} }{\mathrm{1}+{n}^{\mathrm{2}} }\:\Rightarrow{a}_{{n}} =\frac{\mathrm{2}\left\{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} {e}^{−\pi} \right.}{\pi\left(\mathrm{1}+{n}^{\mathrm{2}} \right)} \\ $$$$ \\ $$$$ \\ $$

Commented by Abdo msup. last updated on 28/Aug/19

we have a_0 =(2/π) ∫_0 ^π   e^(−x)  dx =(2/π)[−e^(−x) ]_0 ^π   =(2/π){1−e^(−π) } ⇒(a_0 /2) =((1−e^(−π) )/π) ⇒  e^(−∣x∣)  =((1−e^(−π) )/π) +(2/π)Σ_(n=1) ^∞   (({1−(−1)^n e^(−π) })/(1+n^2 )) cos(nx)

$${we}\:{have}\:{a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:\:{e}^{−{x}} \:{dx}\:=\frac{\mathrm{2}}{\pi}\left[−{e}^{−{x}} \right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\mathrm{2}}{\pi}\left\{\mathrm{1}−{e}^{−\pi} \right\}\:\Rightarrow\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:=\frac{\mathrm{1}−{e}^{−\pi} }{\pi}\:\Rightarrow \\ $$$${e}^{−\mid{x}\mid} \:=\frac{\mathrm{1}−{e}^{−\pi} }{\pi}\:+\frac{\mathrm{2}}{\pi}\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left\{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} {e}^{−\pi} \right\}}{\mathrm{1}+{n}^{\mathrm{2}} }\:{cos}\left({nx}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com