Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67381 by mathmax by abdo last updated on 26/Aug/19

let f(x) =x^2        2π periodic  even  develop f at fourier serie

$${let}\:{f}\left({x}\right)\:={x}^{\mathrm{2}} \:\:\:\:\:\:\:\mathrm{2}\pi\:{periodic}\:\:{even}\:\:{develop}\:{f}\:{at}\:{fourier}\:{serie} \\ $$

Commented by mathmax by abdo last updated on 27/Aug/19

f even ⇒f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  with  a_n =(2/T)∫_([T])   x^2  cos(nx)dx =(2/(2π))∫_(−π) ^π  x^2 coz(nx)dx  =(2/π)∫_0 ^π  x^2 cos(nx)dx ⇒(π/2)a_n =∫_0 ^π  x^2  cos(nx)dx  by parts  ∫_0 ^π  x^2  cos(nx)dx =[(x^2 /n)sin(nx)]_0 ^π  −∫_0 ^π  ((2x)/n)sin(nx)dx  −(2/n) ∫_0 ^π  xsin(nx)dx =−(2/n)[    [−(x/n)cos(nx)]_0 ^π  −∫_0 ^π −(1/n)cos(nx)dx}  =−(2/n){−(π/n) (−1)^n  +(1/n^2 )[sinnx]_0 ^π } =((2π)/n^2 )(−1)^n  ⇒  a_n =(2/π)×((2π)/n^2 )(−1)^(n )  =((4π)/(πn^2 ))(−1)^n   a_0 =(2/π) ∫_0 ^π  x^2  dx =(2/π)[(x^3 /3)]_0 ^π  =(2/π)×(π^3 /3) =((2π^2 )/3) ⇒  ★x^2  =(π^2 /3) +4Σ_(n=1) ^∞   (((−1)^n )/n^2 )cos(nx)★

$${f}\:{even}\:\Rightarrow{f}\left({x}\right)\:=\frac{{a}_{\mathrm{0}} }{\mathrm{2}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:{a}_{{n}} {cos}\left({nx}\right)\:\:{with} \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{{T}}\int_{\left[{T}\right]} \:\:{x}^{\mathrm{2}} \:{cos}\left({nx}\right){dx}\:=\frac{\mathrm{2}}{\mathrm{2}\pi}\int_{−\pi} ^{\pi} \:{x}^{\mathrm{2}} {coz}\left({nx}\right){dx} \\ $$$$=\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{2}} {cos}\left({nx}\right){dx}\:\Rightarrow\frac{\pi}{\mathrm{2}}{a}_{{n}} =\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{2}} \:{cos}\left({nx}\right){dx}\:\:{by}\:{parts} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{2}} \:{cos}\left({nx}\right){dx}\:=\left[\frac{{x}^{\mathrm{2}} }{{n}}{sin}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{2}{x}}{{n}}{sin}\left({nx}\right){dx} \\ $$$$−\frac{\mathrm{2}}{{n}}\:\int_{\mathrm{0}} ^{\pi} \:{xsin}\left({nx}\right){dx}\:=−\frac{\mathrm{2}}{{n}}\left[\:\:\:\:\left[−\frac{{x}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:−\int_{\mathrm{0}} ^{\pi} −\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right){dx}\right\} \\ $$$$=−\frac{\mathrm{2}}{{n}}\left\{−\frac{\pi}{{n}}\:\left(−\mathrm{1}\right)^{{n}} \:+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left[{sinnx}\right]_{\mathrm{0}} ^{\pi} \right\}\:=\frac{\mathrm{2}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \:\Rightarrow \\ $$$${a}_{{n}} =\frac{\mathrm{2}}{\pi}×\frac{\mathrm{2}\pi}{{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}\:} \:=\frac{\mathrm{4}\pi}{\pi{n}^{\mathrm{2}} }\left(−\mathrm{1}\right)^{{n}} \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{2}}{\pi}\:\int_{\mathrm{0}} ^{\pi} \:{x}^{\mathrm{2}} \:{dx}\:=\frac{\mathrm{2}}{\pi}\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{2}}{\pi}×\frac{\pi^{\mathrm{3}} }{\mathrm{3}}\:=\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{3}}\:\Rightarrow \\ $$$$\bigstar{x}^{\mathrm{2}} \:=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\:+\mathrm{4}\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }{cos}\left({nx}\right)\bigstar \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com