Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 6750 by Tawakalitu. last updated on 22/Jul/16

Answered by Yozzii last updated on 22/Jul/16

Let ∠QPR=∠RPS=α>0, ∠PQR=β>0 and ∠PSR=δ>0.  By the sine rule, in △QPR,   ((QR)/(sinα))=((QP)/(sin∠PRQ))=((3a)/(sin(π−(α+β))))  ⇒QR=((3asinα)/(sin(α+β))).  In △PRS, by the sine rule we have  ((RS)/(sinα))=((PS)/(sin∠PRS))=(a/(sin(π−(α+δ))))  RS=((asinα)/(sin(α+δ))).  ∴((QR)/(RS))=((3asinα/sin(α+β))/(asinα/sin(α+δ)))  ((QR)/(RS))=((3sin(α+δ))/(sin(α+β)))  Now, in △QPS, ∠QPR+∠RPS+∠PSR+∠RQP=π.  ∴ α+α+β+δ=π⇒α+δ=π−(α+β).  ⇒((QR)/(RS))=((3sin(π−(α+β)))/(sin(α+β)))  ((QR)/(RS))=((3sin(α+β))/(sin(α+β)))=(3/1)  ⇒QR:RS=3:1⇒SR:(QR+RS)=SR:SQ=1:(3+1)=1:4  The point R divides SQ into two lengths such that  the length QR is 3 times the length RS,  which implies that RS is one quarter  the entire side SQ of △QPS.

$${Let}\:\angle{QPR}=\angle{RPS}=\alpha>\mathrm{0},\:\angle{PQR}=\beta>\mathrm{0}\:{and}\:\angle{PSR}=\delta>\mathrm{0}. \\ $$$${By}\:{the}\:{sine}\:{rule},\:{in}\:\bigtriangleup{QPR},\: \\ $$$$\frac{{QR}}{{sin}\alpha}=\frac{{QP}}{{sin}\angle{PRQ}}=\frac{\mathrm{3}{a}}{{sin}\left(\pi−\left(\alpha+\beta\right)\right)} \\ $$$$\Rightarrow{QR}=\frac{\mathrm{3}{asin}\alpha}{{sin}\left(\alpha+\beta\right)}. \\ $$$${In}\:\bigtriangleup{PRS},\:{by}\:{the}\:{sine}\:{rule}\:{we}\:{have} \\ $$$$\frac{{RS}}{{sin}\alpha}=\frac{{PS}}{{sin}\angle{PRS}}=\frac{{a}}{{sin}\left(\pi−\left(\alpha+\delta\right)\right)} \\ $$$${RS}=\frac{{asin}\alpha}{{sin}\left(\alpha+\delta\right)}. \\ $$$$\therefore\frac{{QR}}{{RS}}=\frac{\mathrm{3}{asin}\alpha/{sin}\left(\alpha+\beta\right)}{{asin}\alpha/{sin}\left(\alpha+\delta\right)} \\ $$$$\frac{{QR}}{{RS}}=\frac{\mathrm{3}{sin}\left(\alpha+\delta\right)}{{sin}\left(\alpha+\beta\right)} \\ $$$${Now},\:{in}\:\bigtriangleup{QPS},\:\angle{QPR}+\angle{RPS}+\angle{PSR}+\angle{RQP}=\pi. \\ $$$$\therefore\:\alpha+\alpha+\beta+\delta=\pi\Rightarrow\alpha+\delta=\pi−\left(\alpha+\beta\right). \\ $$$$\Rightarrow\frac{{QR}}{{RS}}=\frac{\mathrm{3}{sin}\left(\pi−\left(\alpha+\beta\right)\right)}{{sin}\left(\alpha+\beta\right)} \\ $$$$\frac{{QR}}{{RS}}=\frac{\mathrm{3}{sin}\left(\alpha+\beta\right)}{{sin}\left(\alpha+\beta\right)}=\frac{\mathrm{3}}{\mathrm{1}} \\ $$$$\Rightarrow{QR}:{RS}=\mathrm{3}:\mathrm{1}\Rightarrow{SR}:\left({QR}+{RS}\right)={SR}:{SQ}=\mathrm{1}:\left(\mathrm{3}+\mathrm{1}\right)=\mathrm{1}:\mathrm{4} \\ $$$${The}\:{point}\:{R}\:{divides}\:{SQ}\:{into}\:{two}\:{lengths}\:{such}\:{that} \\ $$$${the}\:{length}\:{QR}\:{is}\:\mathrm{3}\:{times}\:{the}\:{length}\:{RS}, \\ $$$${which}\:{implies}\:{that}\:{RS}\:{is}\:{one}\:{quarter} \\ $$$${the}\:{entire}\:{side}\:{SQ}\:{of}\:\bigtriangleup{QPS}. \\ $$$$ \\ $$

Commented by Tawakalitu. last updated on 22/Jul/16

Thanks so much.. i appreciate

$${Thanks}\:{so}\:{much}..\:{i}\:{appreciate} \\ $$

Answered by sandy_suhendra last updated on 22/Jul/16

Let ∠QPR=∠RPS=α           ∠QRP=β so ∠SRP=(180−β)  In △QPR ⇒((QR)/(sin α)) = ((PQ)/(sin β))     [sin rule]                 ((QR)/(sinα)) = ((3a)/(sin β))                   QR = ((3a sin α)/(sin β))  In △PRS ⇒ ((RS)/(sin α)) = ((PS)/(sin (180−β)))   ⇒ sin (180−β)=sin β                                 ((RS)/(sin α)) = (a/(sin β))                      RS = ((a sin α)/(sin β))  ∴    QR : RS = ((3a sin α)/(sin β))  :  ((a sin α)/(sin β)) = 3 :1  SR : SQ = 1 : (1+3) = 1 : 4  (I hope this answer is more simple)

$${Let}\:\angle{QPR}=\angle{RPS}=\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\angle{QRP}=\beta\:{so}\:\angle{SRP}=\left(\mathrm{180}−\beta\right) \\ $$$${In}\:\bigtriangleup{QPR}\:\Rightarrow\frac{{QR}}{{sin}\:\alpha}\:=\:\frac{{PQ}}{{sin}\:\beta}\:\:\:\:\:\left[{sin}\:{rule}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{QR}}{{sin}\alpha}\:=\:\frac{\mathrm{3}{a}}{{sin}\:\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{QR}\:=\:\frac{\mathrm{3}{a}\:{sin}\:\alpha}{{sin}\:\beta} \\ $$$${In}\:\bigtriangleup{PRS}\:\Rightarrow\:\frac{{RS}}{{sin}\:\alpha}\:=\:\frac{{PS}}{{sin}\:\left(\mathrm{180}−\beta\right)}\:\:\:\Rightarrow\:{sin}\:\left(\mathrm{180}−\beta\right)={sin}\:\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{RS}}{{sin}\:\alpha}\:=\:\frac{{a}}{{sin}\:\beta} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{RS}\:=\:\frac{{a}\:{sin}\:\alpha}{{sin}\:\beta} \\ $$$$\therefore\:\:\:\:{QR}\::\:{RS}\:=\:\frac{\mathrm{3}{a}\:{sin}\:\alpha}{{sin}\:\beta}\:\::\:\:\frac{{a}\:{sin}\:\alpha}{{sin}\:\beta}\:=\:\mathrm{3}\::\mathrm{1} \\ $$$${SR}\::\:{SQ}\:=\:\mathrm{1}\::\:\left(\mathrm{1}+\mathrm{3}\right)\:=\:\mathrm{1}\::\:\mathrm{4} \\ $$$$\left({I}\:{hope}\:{this}\:{answer}\:{is}\:{more}\:{simple}\right) \\ $$

Commented by Tawakalitu. last updated on 23/Jul/16

Wow thanks

$${Wow}\:{thanks} \\ $$

Answered by Rasheed Soomro last updated on 22/Jul/16

Commented by Rasheed Soomro last updated on 23/Jul/16

Answer using only geometry   i-e without  using trigonomeric ratios.    Part-I  Proving  PQ : PS = QR : RS  Given:    _(−)   △PQS, ∠1=∠2  Construction:   _(−)   Draw ST  parallel to PR.Let ST meets produced  QP  at T.  Proof:_(−)   ∠3=∠1    [Corresponding angles]  But ∠1=∠2  [Given]  ∴    ∠3=∠2    [Transitive property of equality]  But ∠2=∠4   [Alternative angles]  ∴     ∠3=∠4    [Transitive property of equality]  ∴    PS=PT    [Opposite sides of equal angles]  Now in △QTS       ∵ PR ∥ TS  [Construction]  ∴  QP : PT = QR : RS   [A theorm]  But since PT=PS  [Proved already]  ∴   QP : PS = QR : RS    Part-II           ((QP)/(PS))=((QR)/(RS))   [Proved]           ((QP)/(PS))+1=((QR)/(RS))+1  [Adding 1 to both sides]   Or        ((QP+PS)/(PS))=((QR+RS)/(RS))           ((QP+PS)/(PS))=((QS)/(RS))    [QR+RS=QS]  Now QP=3a  and    PS=a    [Given]             ((3a+a)/a)=((QS)/(RS))    Or    ((QS)/(RS))  =(4/1)           RS : QS=1:4

$${Answer}\:{using}\:{only}\:{geometry}\: \\ $$$${i}-{e}\:{without}\:\:{using}\:{trigonomeric}\:{ratios}. \\ $$$$ \\ $$$${Part}-{I}\:\:{Proving}\:\:{PQ}\::\:{PS}\:=\:{QR}\::\:{RS} \\ $$$$\underset{−} {{Given}:\:\:\:\:} \\ $$$$\bigtriangleup{PQS},\:\angle\mathrm{1}=\angle\mathrm{2} \\ $$$$\underset{−} {{Construction}:\:\:\:} \\ $$$${Draw}\:{ST}\:\:{parallel}\:{to}\:{PR}.{Let}\:{ST}\:{meets}\:{produced} \\ $$$${QP}\:\:{at}\:{T}. \\ $$$$\underset{−} {{Proof}:} \\ $$$$\angle\mathrm{3}=\angle\mathrm{1}\:\:\:\:\left[{Corresponding}\:{angles}\right] \\ $$$${But}\:\angle\mathrm{1}=\angle\mathrm{2}\:\:\left[{Given}\right] \\ $$$$\therefore\:\:\:\:\angle\mathrm{3}=\angle\mathrm{2}\:\:\:\:\left[{Transitive}\:{property}\:{of}\:{equality}\right] \\ $$$${But}\:\angle\mathrm{2}=\angle\mathrm{4}\:\:\:\left[{Alternative}\:{angles}\right] \\ $$$$\therefore\:\:\:\:\:\angle\mathrm{3}=\angle\mathrm{4}\:\:\:\:\left[{Transitive}\:{property}\:{of}\:{equality}\right] \\ $$$$\therefore\:\:\:\:{PS}={PT}\:\:\:\:\left[{Opposite}\:{sides}\:{of}\:{equal}\:{angles}\right] \\ $$$${Now}\:{in}\:\bigtriangleup{QTS}\:\: \\ $$$$\:\:\:\because\:{PR}\:\parallel\:{TS}\:\:\left[{Construction}\right] \\ $$$$\therefore\:\:{QP}\::\:{PT}\:=\:{QR}\::\:{RS}\:\:\:\left[{A}\:{theorm}\right] \\ $$$${But}\:{since}\:{PT}={PS}\:\:\left[{Proved}\:{already}\right] \\ $$$$\therefore\:\:\:{QP}\::\:{PS}\:=\:{QR}\::\:{RS} \\ $$$$ \\ $$$${Part}-{II} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{QP}}{{PS}}=\frac{{QR}}{{RS}}\:\:\:\left[{Proved}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{QP}}{{PS}}+\mathrm{1}=\frac{{QR}}{{RS}}+\mathrm{1}\:\:\left[{Adding}\:\mathrm{1}\:{to}\:{both}\:{sides}\right] \\ $$$$\:{Or}\:\:\:\:\:\:\:\:\frac{{QP}+{PS}}{{PS}}=\frac{{QR}+{RS}}{{RS}} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{QP}+{PS}}{{PS}}=\frac{{QS}}{{RS}}\:\:\:\:\left[{QR}+{RS}={QS}\right] \\ $$$${Now}\:{QP}=\mathrm{3}{a}\:\:{and}\:\:\:\:{PS}={a}\:\:\:\:\left[{Given}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{3}{a}+{a}}{{a}}=\frac{{QS}}{{RS}}\:\: \\ $$$${Or}\:\:\:\:\frac{{QS}}{{RS}}\:\:=\frac{\mathrm{4}}{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:{RS}\::\:{QS}=\mathrm{1}:\mathrm{4} \\ $$

Commented by Tawakalitu. last updated on 23/Jul/16

I really appreciate your effort

$${I}\:{really}\:{appreciate}\:{your}\:{effort} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com