Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67532 by mathmax by abdo last updated on 28/Aug/19

prove that  π cotan(πα) =lim_(n→+∞)    Σ_(k=−n) ^n   (1/(α−k))

$${prove}\:{that}\:\:\pi\:{cotan}\left(\pi\alpha\right)\:={lim}_{{n}\rightarrow+\infty} \:\:\:\sum_{{k}=−{n}} ^{{n}} \:\:\frac{\mathrm{1}}{\alpha−{k}} \\ $$

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

 Use the formulas  Σ_(−∞) ^∞ f(k)=−Σ_z_k  Res(f(z)πcotan(πz),z_k ) and Σ_(−∞) ^∞ (−1)^k f(k)=−Σ_z_k   Res(f(z)πcsc(πz),z_k )    [with  csc(πx)=(1/(sin(πx)))   So here f(k)=(1/(α−k))  and z_k =α  Σ_(−∞) ^∞  (1/(α−k)) =−Res(((πcotan(πz))/(α−z)),α)= −lim_(z→α)  ((((z−α)πcotan(πz))/(α−z)))=πcotan(πα)

$$\:{Use}\:{the}\:{formulas}\:\:\underset{−\infty} {\overset{\infty} {\sum}}{f}\left({k}\right)=−\underset{{z}_{{k}} } {\sum}{Res}\left({f}\left({z}\right)\pi{cotan}\left(\pi{z}\right),{z}_{{k}} \right)\:{and}\:\underset{−\infty} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {f}\left({k}\right)=−\underset{{z}_{{k}} } {\sum}\:{Res}\left({f}\left({z}\right)\pi{csc}\left(\pi{z}\right),{z}_{{k}} \right)\:\:\:\:\left[{with}\:\:{csc}\left(\pi{x}\right)=\frac{\mathrm{1}}{{sin}\left(\pi{x}\right)}\:\right. \\ $$$${So}\:{here}\:{f}\left({k}\right)=\frac{\mathrm{1}}{\alpha−{k}}\:\:{and}\:{z}_{{k}} =\alpha \\ $$$$\underset{−\infty} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\alpha−{k}}\:=−{Res}\left(\frac{\pi{cotan}\left(\pi{z}\right)}{\alpha−{z}},\alpha\right)=\:−\underset{{z}\rightarrow\alpha} {\mathrm{lim}}\:\left(\frac{\left({z}−\alpha\right)\pi{cotan}\left(\pi{z}\right)}{\alpha−{z}}\right)=\pi{cotan}\left(\pi\alpha\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com