Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67537 by mathmax by abdo last updated on 28/Aug/19

prove that (1/(Γ(z))) =z e^(γz)  Π_(n=1) ^∞ (1+(z/n))e^(−(z/n))

$${prove}\:{that}\:\frac{\mathrm{1}}{\Gamma\left({z}\right)}\:={z}\:{e}^{\gamma{z}} \:\prod_{{n}=\mathrm{1}} ^{\infty} \left(\mathrm{1}+\frac{{z}}{{n}}\right){e}^{−\frac{{z}}{{n}}} \\ $$

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

    Let use the result (1/(Γ(z)))=lim_(n→∞ )  ((z(z+1)...(z+n))/(n^z  n!))   (1/(Γ(z)))=lim_(n→∞)  ze^(−zln(n))  ((Π_(k=1) ^n (z+k))/(Π_(k=1) ^n k)) =lim_(n→∞)  ze^(−zln(n)) Π_(k=1) ^n [(1+(z/k))e^((−z)/k) .e^(z/k) ]            =lim_(n→∞)  zΠ_(k=1) ^n [(1+(z/k))e^(−(z/k)) ] e^(z(−ln(n)+Σ_(k=1) ^n (1/k) ))     =zΠ_(k=1) ^∞ [(1+(z/k))e^(−(z/k)) ]e^(zγ)         cause  lim_(n→∞)   Σ_(k=1) ^∞ (1/k) −ln(n)=γ

$$ \\ $$$$ \\ $$$${Let}\:{use}\:{the}\:{result}\:\frac{\mathrm{1}}{\Gamma\left({z}\right)}=\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{{z}\left({z}+\mathrm{1}\right)...\left({z}+{n}\right)}{{n}^{{z}} \:{n}!}\: \\ $$$$\frac{\mathrm{1}}{\Gamma\left({z}\right)}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{ze}^{−{zln}\left({n}\right)} \:\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left({z}+{k}\right)}{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{k}}\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{ze}^{−{zln}\left({n}\right)} \underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left[\left(\mathrm{1}+\frac{{z}}{{k}}\right){e}^{\frac{−{z}}{{k}}} .{e}^{\frac{{z}}{{k}}} \right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{z}\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left[\left(\mathrm{1}+\frac{{z}}{{k}}\right){e}^{−\frac{{z}}{{k}}} \right]\:{e}^{{z}\left(−{ln}\left({n}\right)+\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\:\right)} \\ $$$$\:\:={z}\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left[\left(\mathrm{1}+\frac{{z}}{{k}}\right){e}^{−\frac{{z}}{{k}}} \right]{e}^{{z}\gamma} \:\:\:\:\:\:\:\:{cause}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}\:−{ln}\left({n}\right)=\gamma \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com