Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67538 by mathmax by abdo last updated on 28/Aug/19

prove that ((Γ^′ (z))/(Γ(z))) =−γ−(1/z) −Σ_(n=1) ^∞ ((1/(z+n))−(1/n))

$${prove}\:{that}\:\frac{\Gamma^{'} \left({z}\right)}{\Gamma\left({z}\right)}\:=−\gamma−\frac{\mathrm{1}}{{z}}\:−\sum_{{n}=\mathrm{1}} ^{\infty} \left(\frac{\mathrm{1}}{{z}+{n}}−\frac{\mathrm{1}}{{n}}\right) \\ $$

Commented by ~ À ® @ 237 ~ last updated on 29/Aug/19

    It is known that Γ(z+n)=z(z+1)(z+2).....(z+n−1)Γ(z)  So  lnΓ(z+n)=lnΓ(z) +Σ_(k=0) ^(n−1) ln(z+k)   Now we have  lnΓ(z)=lnΓ(z+n)−lnz−Σ_(k=1) ^(n−1) [ln(z+k)−(z/k)−lnk]  −Σ_(k=1) ^(n−1) (z/k) −Σ_(k=1) ^(n−1) lnk  −zln(n)+zln(n)              =lnΓ(z+n)−lnΓ(n)−zln(n)−lnz−Σ_(k=1) ^(n−1) [ln(z+k)−(z/k)−lnk]+z[ln(n)−Σ_(k=1) ^(n−1) (1/k)]     cause Σ_(k=1) ^(n−1) lnk=ln((n−1)!)=lnΓ(n)           =ln[((Γ(z+n))/(n^z Γ(n)))]−lnz−Σ_(k=1) ^(n−1) [ln(z+k)−(z/k)−lnk]+z(ln(n)−H_(n−1) )      (•)  Now let find L=lim_(n→∞)  ((Γ(z+n))/(n^z Γ(n)))   L=lim_(n→∞)  ((z(z+1)...(z+n))/(n^z  n!)) ((nΓ(z))/(z+n)) = 1   cause  lim_(n→∞ )  ((z(z+1)...(z+n))/(n^z  n!)) =(1/(Γ(z)))   So  we have  lim_(n→∞)  lnΓ(z)=ln1−lnz−Σ_(k=1_ ) ^∞ [ln(z+k)−(z/k)−lnk]−zγ         cquse  lim_(n→∞)  (ln(n) −H_(n−1) )=−γ  lnΓ(z)=−zγ−lnz−Σ_(k=1 ) ^∞ [ln(z+k)−(z/k)−lnk]  Finally  when derivating  on z we get  ((Γ′(z))/(Γ(z)))=−γ−(1/z)−Σ_(k=1) ^∞ ((1/(z+k))−(1/k))

$$ \\ $$$$ \\ $$$${It}\:{is}\:{known}\:{that}\:\Gamma\left({z}+{n}\right)={z}\left({z}+\mathrm{1}\right)\left({z}+\mathrm{2}\right).....\left({z}+{n}−\mathrm{1}\right)\Gamma\left({z}\right) \\ $$$${So}\:\:{ln}\Gamma\left({z}+{n}\right)={ln}\Gamma\left({z}\right)\:+\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{ln}\left({z}+{k}\right)\: \\ $$$${Now}\:{we}\:{have} \\ $$$${ln}\Gamma\left({z}\right)={ln}\Gamma\left({z}+{n}\right)−{lnz}−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{ln}\left({z}+{k}\right)−\frac{{z}}{{k}}−{lnk}\right]\:\:−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{z}}{{k}}\:−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{lnk}\:\:−{zln}\left({n}\right)+{zln}\left({n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={ln}\Gamma\left({z}+{n}\right)−{ln}\Gamma\left({n}\right)−{zln}\left({n}\right)−{lnz}−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{ln}\left({z}+{k}\right)−\frac{{z}}{{k}}−{lnk}\right]+{z}\left[{ln}\left({n}\right)−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{k}}\right]\:\:\:\:\:{cause}\:\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}{lnk}={ln}\left(\left({n}−\mathrm{1}\right)!\right)={ln}\Gamma\left({n}\right) \\ $$$$\:\:\:\:\:\:\:\:\:={ln}\left[\frac{\Gamma\left({z}+{n}\right)}{{n}^{{z}} \Gamma\left({n}\right)}\right]−{lnz}−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\left[{ln}\left({z}+{k}\right)−\frac{{z}}{{k}}−{lnk}\right]+{z}\left({ln}\left({n}\right)−{H}_{{n}−\mathrm{1}} \right)\:\:\:\:\:\:\left(\bullet\right) \\ $$$${Now}\:{let}\:{find}\:{L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\Gamma\left({z}+{n}\right)}{{n}^{{z}} \Gamma\left({n}\right)}\: \\ $$$${L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{z}\left({z}+\mathrm{1}\right)...\left({z}+{n}\right)}{{n}^{{z}} \:{n}!}\:\frac{{n}\Gamma\left({z}\right)}{{z}+{n}}\:=\:\mathrm{1}\:\:\:{cause}\:\:\underset{{n}\rightarrow\infty\:} {\mathrm{lim}}\:\frac{{z}\left({z}+\mathrm{1}\right)...\left({z}+{n}\right)}{{n}^{{z}} \:{n}!}\:=\frac{\mathrm{1}}{\Gamma\left({z}\right)}\: \\ $$$${So}\:\:{we}\:{have} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{ln}\Gamma\left({z}\right)={ln}\mathrm{1}−{lnz}−\underset{{k}=\mathrm{1}_{} } {\overset{\infty} {\sum}}\left[{ln}\left({z}+{k}\right)−\frac{{z}}{{k}}−{lnk}\right]−{z}\gamma\:\:\:\:\:\:\:\:\:{cquse}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({ln}\left({n}\right)\:−{H}_{{n}−\mathrm{1}} \right)=−\gamma \\ $$$${ln}\Gamma\left({z}\right)=−{z}\gamma−{lnz}−\underset{{k}=\mathrm{1}\:} {\overset{\infty} {\sum}}\left[{ln}\left({z}+{k}\right)−\frac{{z}}{{k}}−{lnk}\right] \\ $$$${Finally}\:\:{when}\:{derivating}\:\:{on}\:{z}\:{we}\:{get} \\ $$$$\frac{\Gamma'\left({z}\right)}{\Gamma\left({z}\right)}=−\gamma−\frac{\mathrm{1}}{{z}}−\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{z}+{k}}−\frac{\mathrm{1}}{{k}}\right) \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 29/Aug/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com