Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67539 by mathmax by abdo last updated on 28/Aug/19

calculate ∫_0 ^∞   (du/(∣u+z∣^2 ))  if z =r e^(iθ)    and −π<θ<π

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{\mid{u}+{z}\mid^{\mathrm{2}} }\:\:{if}\:{z}\:={r}\:{e}^{{i}\theta} \:\:\:{and}\:−\pi<\theta<\pi \\ $$

Commented by~ À ® @ 237 ~ last updated on 29/Aug/19

∣u+z∣^2 =(u+z)(u+z^_ )   I=(1/(z−z^_ )) ∫_0 ^∞ ((1/(u+z^_ )) −(1/(u+z ))) du =(1/(2iIm(z)))[ln(((u+z^_ )/(u+z)))]_0 ^∞ =(1/(2irsinθ)) [ln1−ln(e^(−i2θ)  )]=(θ/(rsinθ))

$$\mid{u}+{z}\mid^{\mathrm{2}} =\left({u}+{z}\right)\left({u}+\overset{\_} {{z}}\right)\: \\ $$ $${I}=\frac{\mathrm{1}}{{z}−\overset{\_} {{z}}}\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{u}+\overset{\_} {{z}}}\:−\frac{\mathrm{1}}{{u}+{z}\:}\right)\:{du}\:=\frac{\mathrm{1}}{\mathrm{2}{iIm}\left({z}\right)}\left[{ln}\left(\frac{{u}+\overset{\_} {{z}}}{{u}+{z}}\right)\right]_{\mathrm{0}} ^{\infty} =\frac{\mathrm{1}}{\mathrm{2}{irsin}\theta}\:\left[{ln}\mathrm{1}−{ln}\left({e}^{−{i}\mathrm{2}\theta} \:\right)\right]=\frac{\theta}{{rsin}\theta} \\ $$ $$ \\ $$

Commented bymathmax by abdo last updated on 29/Aug/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Commented bymathmax by abdo last updated on 29/Aug/19

let I =∫_0 ^∞   (du/(∣u+z∣^2 )) ⇒ I =∫_0 ^∞   (du/((u+z)(u+z^− )))  =(1/(z−z^− ))∫_0 ^∞ ((1/(u+z^− ))−(1/(u+z)))du =(1/(2i(rsinθ))) [ln(((u+z^− )/(u+z)))]_0 ^(+∞)   =(1/(2ir sinθ))×(−ln((z^− /z)) ) we have −ln((z^− /z))=ln((z/z^− ))  (z/z^− ) =(z^2 /(∣z∣^2 )) =((r^2  e^(2iθ) )/r^2 ) =e^(2iθ)  ⇒ln((z/z^− )) =2iθ ⇒  I =(1/(2ir sinθ))×(2iθ) ⇒I =(θ/(r sinθ)) .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{\mid{u}+{z}\mid^{\mathrm{2}} }\:\Rightarrow\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{du}}{\left({u}+{z}\right)\left({u}+\overset{−} {{z}}\right)} \\ $$ $$=\frac{\mathrm{1}}{{z}−\overset{−} {{z}}}\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{{u}+\overset{−} {{z}}}−\frac{\mathrm{1}}{{u}+{z}}\right){du}\:=\frac{\mathrm{1}}{\mathrm{2}{i}\left({rsin}\theta\right)}\:\left[{ln}\left(\frac{{u}+\overset{−} {{z}}}{{u}+{z}}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$ $$=\frac{\mathrm{1}}{\mathrm{2}{ir}\:{sin}\theta}×\left(−{ln}\left(\frac{\overset{−} {{z}}}{{z}}\right)\:\right)\:{we}\:{have}\:−{ln}\left(\frac{\overset{−} {{z}}}{{z}}\right)={ln}\left(\frac{{z}}{\overset{−} {{z}}}\right) \\ $$ $$\frac{{z}}{\overset{−} {{z}}}\:=\frac{{z}^{\mathrm{2}} }{\mid{z}\mid^{\mathrm{2}} }\:=\frac{{r}^{\mathrm{2}} \:{e}^{\mathrm{2}{i}\theta} }{{r}^{\mathrm{2}} }\:={e}^{\mathrm{2}{i}\theta} \:\Rightarrow{ln}\left(\frac{{z}}{\overset{−} {{z}}}\right)\:=\mathrm{2}{i}\theta\:\Rightarrow \\ $$ $${I}\:=\frac{\mathrm{1}}{\mathrm{2}{ir}\:{sin}\theta}×\left(\mathrm{2}{i}\theta\right)\:\Rightarrow{I}\:=\frac{\theta}{{r}\:{sin}\theta}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com