All Questions Topic List
Logic Questions
Previous in All Question Next in All Question
Previous in Logic Next in Logic
Question Number 67651 by ~ À ® @ 237 ~ last updated on 29/Aug/19
1)LetconsiderS=∑∞n=0nandT=∑∞n=0(−1)n+1nWeknowthat∀x∈]−1;1]∑∞n=0(−x)n=11+x,thenafterderivating1(1+x)2=∑∞n=1(−1)n+1nxn−1forx=1,wegetT=14NowletascertainsomethingT=∑∞n=0(−1)2n+2(2n+1)+∑∞n=0(−1)2n+1(2n)=∑∞n=0(2n+1)−2S(∙)knowingthatS=∑∞n=0(2n)+∑∞n=0(2n+1)So∑∞n=0(2n+1)=S−2SWhenreplacingthatvaluein(∙)wegetT=(S−2S)−2SIficoncludethatT=−3SandfinallyfindS=−T3=−112wherewillthemistakebe?2)LetconsiderK=1+20202019+(20202019)2+(20202019)3+......+...20202019K=20202019+(20202019)2+(20202019)3+....K−1=20202019+(20202019)2+(20202019)3+...So20202019K=K−1ThenK=−2019Whereistheerror?3)LetconsidernanintegerWehave0=n−n=n+(−n)=n+(−n)2×12=n+[(−n)2]12=n+n2=n+n=2nSo<<allintegerarenull:0istheonlyinteger>>Whereistheerror?4)letconsidernanintegerdifferentofzeroandf(n)=nln(n)wehavedfdn=ln(n)+1(∙)Likewisef(n)=ln(nn)andweknowthatnn=n×n×n×......×n(ntimes)Sof(n)=ln(n)+ln(n)+......+ln(n)(ntimes)Nowwehavedfdn=1n+1n+....+1n(ntimes)Sodfdn=1(∙∙)Relation(∙)and(∙∙)giveln(n)+1=1thenln(n)=0⇒n=1<<Thelogarithmofalln⩾1isnull:Thereisnointegerbigthan1>>Whereistheerror?5)letconsiderx=0,999999999.......weascertainthat10x=9,999999999......then10x=9+0,999999999....So10x=9+xfinallyx=1<<0.9999999999999999.....isandinteger>>Isthereanyerror?6)letconsidera=2666666666666666666666666666666665b=999999999999999999999995199999999999999999999999Inthewaytocancel,ifijustremoveonecommonfiguretothenumeratorandtothedenominatorAndifinda=25andb=51Willitbewrong?ifno,explain!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com