Question and Answers Forum

All Questions      Topic List

Logic Questions

Previous in All Question      Next in All Question      

Previous in Logic      Next in Logic      

Question Number 67651 by ~ À ® @ 237 ~ last updated on 29/Aug/19

1)Let consider  S= Σ_(n=0) ^∞  n     and  T=Σ_(n=0) ^∞  (−1)^(n+1) n  We know that  ∀ x∈]−1;1]  Σ_(n=0) ^∞ (−x)^n  =(1/(1+x)) ,    then after derivating   (1/((1+x)^2 ))=Σ_(n=1) ^∞ (−1)^(n+1)  nx^(n−1)   for  x=1 ,we get   T=(1/4)   Now  let ascertain something  T=Σ_(n=0) ^∞ (−1)^(2n+2) (2n+1) +Σ_(n=0) ^∞ (−1)^(2n+1) (2n)    =Σ_(n=0) ^∞ (2n+1) −2S            (•)  knowing that S=Σ_(n=0) ^∞ (2n)+Σ_(n=0) ^∞ (2n+1)  So Σ_(n=0) ^∞ (2n+1)= S−2S   When replacing that value in  (•)  we get    T=(S−2S )−2S     If i conclude that  T=−3S    and finally  find  S=−(T/3)=−(1/(12))    where will the mistake be?   2)Let consider K=1+((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +......+...  ((2020)/(2019))K=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +....  K−1=((2020)/(2019))+(((2020)/(2019)))^2 +(((2020)/(2019)))^3 +...  So  ((2020)/(2019))K=K−1   Then  K=−2019  Where is the error?  3)Let consider n an  integer   We have  0=n−n    =n+(−n)=n+(−n)^(2×(1/2))    =n+[(−n)^2 ]^(1/2) =n+ (√n^2 ) = n+n=2n  So << all  integer   are null  :  0 is the  only integer>>  Where is the error?  4)   let consider n an integer different of zero and  f(n)=nln(n)  we have  (df/dn)=ln(n)+1    (•)  Likewise f(n)=ln(n^n )   and we know that  n^n =n×n×n×......×n  (n times)  So  f(n)=ln(n)+ln(n)+......+ln(n)      (n times)  Now we have  (df/dn)=(1/n)+(1/n)+....+(1/n)      (n  times)  So   (df/( dn))=1     (••)  Relation (•)  and    (••)  give      ln(n)+1=1   then  ln(n)=0 ⇒ n=1  << The logarithm of  all n≥1 is null : There is no integer big than 1 >>  Where is the error?  5) let consider  x=0,999999999.......  we ascertain that   10x=9,999999999......  then  10x=9+0,999999999....  So  10x=9+x    finally  x=1  << 0.9999999999999999 .....  is  and integer >>  Is there any error?  6)let consider  a=((26666666666666666)/(66666666666666665))   b=((999999999999999999999995)/(199999999999999999999999))   In the way to cancel , if i just remove one common  figure to the numerator and to the denominator  And i find a=(2/5)  and  b=(5/1)   Will it be wrong? if  no ,explain!

1)LetconsiderS=n=0nandT=n=0(1)n+1nWeknowthatx]1;1]n=0(x)n=11+x,thenafterderivating1(1+x)2=n=1(1)n+1nxn1forx=1,wegetT=14NowletascertainsomethingT=n=0(1)2n+2(2n+1)+n=0(1)2n+1(2n)=n=0(2n+1)2S()knowingthatS=n=0(2n)+n=0(2n+1)Son=0(2n+1)=S2SWhenreplacingthatvaluein()wegetT=(S2S)2SIficoncludethatT=3SandfinallyfindS=T3=112wherewillthemistakebe?2)LetconsiderK=1+20202019+(20202019)2+(20202019)3+......+...20202019K=20202019+(20202019)2+(20202019)3+....K1=20202019+(20202019)2+(20202019)3+...So20202019K=K1ThenK=2019Whereistheerror?3)LetconsidernanintegerWehave0=nn=n+(n)=n+(n)2×12=n+[(n)2]12=n+n2=n+n=2nSo<<allintegerarenull:0istheonlyinteger>>Whereistheerror?4)letconsidernanintegerdifferentofzeroandf(n)=nln(n)wehavedfdn=ln(n)+1()Likewisef(n)=ln(nn)andweknowthatnn=n×n×n×......×n(ntimes)Sof(n)=ln(n)+ln(n)+......+ln(n)(ntimes)Nowwehavedfdn=1n+1n+....+1n(ntimes)Sodfdn=1()Relation()and()giveln(n)+1=1thenln(n)=0n=1<<Thelogarithmofalln1isnull:Thereisnointegerbigthan1>>Whereistheerror?5)letconsiderx=0,999999999.......weascertainthat10x=9,999999999......then10x=9+0,999999999....So10x=9+xfinallyx=1<<0.9999999999999999.....isandinteger>>Isthereanyerror?6)letconsidera=2666666666666666666666666666666665b=999999999999999999999995199999999999999999999999Inthewaytocancel,ifijustremoveonecommonfiguretothenumeratorandtothedenominatorAndifinda=25andb=51Willitbewrong?ifno,explain!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com