Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 67770 by TawaTawa last updated on 31/Aug/19

Answered by MJS last updated on 31/Aug/19

AD+DE=AE=6  ⇒ AD=q; DE=6−q  [⇒ q<6]  AB=DE−AD=6−2q  [⇒ q<3]  A= ((0),(0) )  D= ((q),(0) )  E= ((6),(0) )  line AB: y=xtan 60° ⇔ y=(√3)x  [1]  B on this circle: x^2 +y^2 =(6−2q)^2   [2]  [1] in [2]  x=3−q  ⇒ B= (((3−q)),(((√3)(3−q))) )  line BD: y=(√3)((q−3)/(2q−3))(x−q)  C_(∈BD) = ((p),(((√3)((q−3)/(2q−3))(p−q))) )  ∣CD∣^2 =(((p−q)^2 )/((2q−3)^2 ))(7q^2 −30q+36)  ∣BD^2 ∣=7q^2 −30q+36=∣CD∣^2   ⇒ (((p−q)^2 )/((2q−3)^2 ))=1 ⇒ p=3q−3  c=∣AB∣=6−2q  b=∣AC∣=2(√(3q^2 −9q+9))  a=∣BC∣=2(√(7q^2 −30q+36))  radius of circumcircle of ΔABC  R=((abc)/δ)=(2/q)(√((q^2 −3q+3)(7q^2 −30q+36)))  center  O= ((((1/q)(4q^2 −15q+18))),((−((√3)/q)(q−2)(2q−3))) )  ∣OE∣^2 =R^2   ⇒ q=(3/2)  ⇒  A= ((0),(0) )  B= (((3/2)),(((3(√3))/2)) )  C= (((3/2)),((−((3(√3))/2))) )  D= (((3/2)),(0) )  E= ((6),(0) )  O= ((3),(0) )  S_(ABC) =6+3(√3)

$${AD}+{DE}={AE}=\mathrm{6} \\ $$$$\Rightarrow\:{AD}={q};\:{DE}=\mathrm{6}−{q}\:\:\left[\Rightarrow\:{q}<\mathrm{6}\right] \\ $$$${AB}={DE}−{AD}=\mathrm{6}−\mathrm{2}{q}\:\:\left[\Rightarrow\:{q}<\mathrm{3}\right] \\ $$$${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{{q}}\\{\mathrm{0}}\end{pmatrix}\:\:{E}=\begin{pmatrix}{\mathrm{6}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{line}\:{AB}:\:{y}={x}\mathrm{tan}\:\mathrm{60}°\:\Leftrightarrow\:{y}=\sqrt{\mathrm{3}}{x}\:\:\left[\mathrm{1}\right] \\ $$$${B}\:\mathrm{on}\:\mathrm{this}\:\mathrm{circle}:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left(\mathrm{6}−\mathrm{2}{q}\right)^{\mathrm{2}} \:\:\left[\mathrm{2}\right] \\ $$$$\left[\mathrm{1}\right]\:\mathrm{in}\:\left[\mathrm{2}\right] \\ $$$${x}=\mathrm{3}−{q} \\ $$$$\Rightarrow\:{B}=\begin{pmatrix}{\mathrm{3}−{q}}\\{\sqrt{\mathrm{3}}\left(\mathrm{3}−{q}\right)}\end{pmatrix} \\ $$$$\mathrm{line}\:{BD}:\:{y}=\sqrt{\mathrm{3}}\frac{{q}−\mathrm{3}}{\mathrm{2}{q}−\mathrm{3}}\left({x}−{q}\right) \\ $$$${C}_{\in{BD}} =\begin{pmatrix}{{p}}\\{\sqrt{\mathrm{3}}\frac{{q}−\mathrm{3}}{\mathrm{2}{q}−\mathrm{3}}\left({p}−{q}\right)}\end{pmatrix} \\ $$$$\mid{CD}\mid^{\mathrm{2}} =\frac{\left({p}−{q}\right)^{\mathrm{2}} }{\left(\mathrm{2}{q}−\mathrm{3}\right)^{\mathrm{2}} }\left(\mathrm{7}{q}^{\mathrm{2}} −\mathrm{30}{q}+\mathrm{36}\right) \\ $$$$\mid{BD}^{\mathrm{2}} \mid=\mathrm{7}{q}^{\mathrm{2}} −\mathrm{30}{q}+\mathrm{36}=\mid{CD}\mid^{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{\left({p}−{q}\right)^{\mathrm{2}} }{\left(\mathrm{2}{q}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{1}\:\Rightarrow\:{p}=\mathrm{3}{q}−\mathrm{3} \\ $$$${c}=\mid{AB}\mid=\mathrm{6}−\mathrm{2}{q} \\ $$$${b}=\mid{AC}\mid=\mathrm{2}\sqrt{\mathrm{3}{q}^{\mathrm{2}} −\mathrm{9}{q}+\mathrm{9}} \\ $$$${a}=\mid{BC}\mid=\mathrm{2}\sqrt{\mathrm{7}{q}^{\mathrm{2}} −\mathrm{30}{q}+\mathrm{36}} \\ $$$$\mathrm{radius}\:\mathrm{of}\:\mathrm{circumcircle}\:\mathrm{of}\:\Delta{ABC} \\ $$$${R}=\frac{{abc}}{\delta}=\frac{\mathrm{2}}{{q}}\sqrt{\left({q}^{\mathrm{2}} −\mathrm{3}{q}+\mathrm{3}\right)\left(\mathrm{7}{q}^{\mathrm{2}} −\mathrm{30}{q}+\mathrm{36}\right)} \\ $$$$\mathrm{center} \\ $$$${O}=\begin{pmatrix}{\frac{\mathrm{1}}{{q}}\left(\mathrm{4}{q}^{\mathrm{2}} −\mathrm{15}{q}+\mathrm{18}\right)}\\{−\frac{\sqrt{\mathrm{3}}}{{q}}\left({q}−\mathrm{2}\right)\left(\mathrm{2}{q}−\mathrm{3}\right)}\end{pmatrix} \\ $$$$\mid{OE}\mid^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\Rightarrow\:{q}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{\frac{\mathrm{3}}{\mathrm{2}}}\\{\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{\frac{\mathrm{3}}{\mathrm{2}}}\\{−\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}}}\end{pmatrix} \\ $$$${D}=\begin{pmatrix}{\frac{\mathrm{3}}{\mathrm{2}}}\\{\mathrm{0}}\end{pmatrix}\:\:{E}=\begin{pmatrix}{\mathrm{6}}\\{\mathrm{0}}\end{pmatrix}\:\:{O}=\begin{pmatrix}{\mathrm{3}}\\{\mathrm{0}}\end{pmatrix} \\ $$$${S}_{{ABC}} =\mathrm{6}+\mathrm{3}\sqrt{\mathrm{3}} \\ $$

Commented by TawaTawa last updated on 31/Aug/19

Wow, God bless you sir. Thanks for your time.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$

Commented by TawaTawa last updated on 31/Aug/19

Sir, i learnt the answer should be:    ((9(√3))/4)  =  3.8971          or       ((4.5(√3))/2)   =  3.8971

$$\mathrm{Sir},\:\mathrm{i}\:\mathrm{learnt}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{should}\:\mathrm{be}:\:\:\:\:\frac{\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{4}}\:\:=\:\:\mathrm{3}.\mathrm{8971}\:\:\:\:\:\:\:\: \\ $$$$\mathrm{or}\:\:\:\:\:\:\:\frac{\mathrm{4}.\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\:=\:\:\mathrm{3}.\mathrm{8971} \\ $$

Commented by MJS last updated on 31/Aug/19

just draw the points and the circle of my  solution, you can see I′m right

$$\mathrm{just}\:\mathrm{draw}\:\mathrm{the}\:\mathrm{points}\:\mathrm{and}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{of}\:\mathrm{my} \\ $$$$\mathrm{solution},\:\mathrm{you}\:\mathrm{can}\:\mathrm{see}\:\mathrm{I}'\mathrm{m}\:\mathrm{right} \\ $$

Commented by TawaTawa last updated on 01/Sep/19

I will sir. God bless you sir.

$$\mathrm{I}\:\mathrm{will}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by TawaTawa last updated on 01/Sep/19

Sir    S_(ABC)   or  S(ABC)  means what sir  ?

$$\mathrm{Sir}\:\:\:\:\mathrm{S}_{\mathrm{ABC}} \:\:\mathrm{or}\:\:\mathrm{S}\left(\mathrm{ABC}\right)\:\:\mathrm{means}\:\mathrm{what}\:\mathrm{sir}\:\:? \\ $$

Commented by TawaTawa last updated on 01/Sep/19

Is it side  ABC  ?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{side}\:\:\mathrm{ABC}\:\:? \\ $$

Commented by TawaTawa last updated on 01/Sep/19

Or, it also means Area ?

$$\mathrm{Or},\:\mathrm{it}\:\mathrm{also}\:\mathrm{means}\:\mathrm{Area}\:? \\ $$

Commented by MJS last updated on 01/Sep/19

I thought it means perimeter

$$\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{means}\:\mathrm{perimeter} \\ $$

Commented by MJS last updated on 01/Sep/19

the area is indeed ((9(√3))/4)

$$\mathrm{the}\:\mathrm{area}\:\mathrm{is}\:\mathrm{indeed}\:\frac{\mathrm{9}\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$

Commented by TawaTawa last updated on 01/Sep/19

Me too sir.  I thought it is perimeter

$$\mathrm{Me}\:\mathrm{too}\:\mathrm{sir}.\:\:\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{is}\:\mathrm{perimeter} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com