Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67799 by mathmax by abdo last updated on 31/Aug/19

calculate ∫_0 ^∞   (dx/((x^2  −e^(ia) )(x^2 −e^(ib) )))  with a>0 andb>0

calculate0dx(x2eia)(x2eib)witha>0andb>0

Commented byMJS last updated on 31/Aug/19

can we calculate ∫_0 ^∞ (dx/((x^2 −α)(x^2 −β))) and then  insert α=e^(ia) ; β=e^(ib) ?

canwecalculate0dx(x2α)(x2β)andthen insertα=eia;β=eib?

Commented bymathmax by abdo last updated on 31/Aug/19

yes sir but you must determine ∫ (dx/(x^2 −z))  with z from C.

yessirbutyoumustdeterminedxx2zwithzfromC.

Commented bymathmax by abdo last updated on 01/Sep/19

let I =∫_0 ^∞    (dx/((x^2 −e^(ia) )(x^2 −e^(ib) ))) ⇒2I =∫_(−∞) ^(+∞)   (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))  let ϕ(z) =(1/((z^2 −e^(ia) )(z^2 −e^(ib) ))) ⇒ϕ(z) =(1/((z−e^((ia)/2) )(z+e^((ia)/2) )(z−e^((ib)/2) )(z+e^((ib)/2) )))  the poles of ϕ are +^− e^((ia)/2)  and +^− e^((ib)/(2 ))    residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,e^((ia)/2) )+Res(ϕ,e^((ib)/2) )}  Res(ϕ,e^((ia)/2) )=lim_(z→e^((ia)/2) )   (z−e^((ia)/2) )ϕ(z) =(1/(2e^((ia)/2) (e^(ia) −e^(ib) ))) =(e^(−i(a/2)) /(2(e^(ia) −e^(ib) )))  Res(ϕ,e^((ib)/2) ) =lim_(z→e^((ib)/2) )   (z−e^((ib)/2) )ϕ(z) =(e^(−((ib)/2)) /(2(e^(ib)  −e^(ia) ))) ⇒  ∫_(−∞) ^(+∞) ϕ(2)dz =2iπ{(e^(−((ia)/2)) /(2(e^(ia) −e^(ib) ))) +(e^(−((ib)/2)) /(2(e^(ib) −e^(ia) )))}    =((iπ)/(e^(ia) −e^(ib) )){ e^(−((ia)/2)) −e^(−((ib)/2)) } =2I ⇒  I =((iπ(e^(−((ia)/2)) −e^(−((ib)/2)) ))/(2(e^(ia) −e^(ib) ))).

letI=0dx(x2eia)(x2eib)2I=+dx(x2eia)(x2eib) letφ(z)=1(z2eia)(z2eib)φ(z)=1(zeia2)(z+eia2)(zeib2)(z+eib2) thepolesofφare+eia2and+eib2residustheoremgive +φ(z)dz=2iπ{Res(φ,eia2)+Res(φ,eib2)} Res(φ,eia2)=limzeia2(zeia2)φ(z)=12eia2(eiaeib)=eia22(eiaeib) Res(φ,eib2)=limzeib2(zeib2)φ(z)=eib22(eibeia) +φ(2)dz=2iπ{eia22(eiaeib)+eib22(eibeia)} =iπeiaeib{eia2eib2}=2I I=iπ(eia2eib2)2(eiaeib).

Answered by mind is power last updated on 01/Sep/19

let γ_r ={z∈C  such that∣z∣≤r ∣im(z)>0}  we have ∫_0 ^(+∞) (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))=(1/2)∫_(−∞) ^(+∞) (dx/((x^2 −e^(ia) )(x^2 −e^(ib) )))  let f(z)=(1/((z^2 −e^(ia) )(z^2 −e^(ib) )))  f(z)=(1/((r^2 e^(2i∅) −e^(ia) )(r^2 e^(2i∅) −e^(ib) )))  over γ_r   ∣f(z)∣≤(1/(∣r^2 −1∣^2 ))  we used ∣z+z′∣≥∣∣z∣−∣z′∣∣ twice  ⇒∫_(γr) f(z)dz≤∫_γ_r  (1/((r^2 −1)^2 ))dz=((πr)/((r^2 −1)^2 ))→0=as r→+∞  residu theorem  poles of f inside γ_r ∪]−∞.+∞[ ar e^(i(a/2)) .e^((ib)/2)   lim (z−e^(i(a/2)) ).f(z)=(1/(2e^(i(a/2)) .(e^(ia) −e^(ib) )))  lim(z−e^(i(b/2)) )f(z)=(1/(2e^(i(b/2)) (e^(ib) −e^(ia) )))  ∫_(−∞) ^(+∞) f(z)dz=2iπΣ_(residu) f(z)=2iπ((e^(−i(b/2)) /((e^(ib) −e^(ia) )2))−(e^(−((ia)/2)) /(2(e^(ib) −e^(ia) ))))  =iπ(((e^(−((ib)/2)) −e^((−ia)/2) )/((e^(i((a+b)/2)) (e^(i((b−a)/2)) −e^(i−((b−a)/2)) ))))=iπ((e^(−ib−i(a/2)) −e^(−ia−i(b/2)) )/(2isin(((a−b)/2))))

letγr={zCsuchthatz∣⩽rim(z)>0} wehave0+dx(x2eia)(x2eib)=12+dx(x2eia)(x2eib) letf(z)=1(z2eia)(z2eib) f(z)=1(r2e2ieia)(r2e2ieib)overγr f(z)∣⩽1r212 weusedz+z∣⩾∣∣zz∣∣twice γrf(z)dzγr1(r21)2dz=πr(r21)20=asr+ residutheorem polesoffinsideγr].+[areia2.eib2 lim(zeia2).f(z)=12eia2.(eiaeib) lim(zeib2)f(z)=12eib2(eibeia) +f(z)dz=2iπresiduf(z)=2iπ(eib2(eibeia)2eia22(eibeia)) =iπ(eib2eia2(eia+b2(eiba2eiba2))=iπeibia2eiaib22isin(ab2)

Commented bymathmax by abdo last updated on 01/Sep/19

thank you sir.

thankyousir.

Commented bymind is power last updated on 01/Sep/19

y:re welcom

y:rewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com