Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67851 by mathmax by abdo last updated on 01/Sep/19

find ∫  (dx/(x^2 −z))  with z from C .

finddxx2zwithzfromC.

Commented by MJS last updated on 01/Sep/19

what′s the problem/mistake if we just  calculate it as if z∈R?  ∫(dx/(x^2 −z))=(1/(2(√z)))ln ((x−(√z))/(x+(√z))) +C  for ∫_0 ^∞ (dx/(x^2 −z)) this would give −(π/(2(√z)))i

whatstheproblem/mistakeifwejustcalculateitasifzR?dxx2z=12zlnxzx+z+Cfor0dxx2zthiswouldgiveπ2zi

Commented by mathmax by abdo last updated on 01/Sep/19

let z=r e^(iθ)  ⇒∫   (dx/(x^2 −z)) =∫  (dx/(x^2 −((√r)e^((iθ)/2) )^2 ))  =∫    (dx/((x−(√r)e^((iθ)/2) )(x+(√r)e^((iθ)/2) ))) =(1/(2(√r)e^((iθ)/2) ))∫((1/(x−(√r)e^((iθ)/2) ))−(1/(x+(√r)e^((iθ)/2) )))dx  =(e^(−((iθ)/2)) /(2(√r))) ln(((x−(√r)e^((iθ)/2) )/(x+(√r)e^((iθ)/2) ))) +C .

letz=reiθdxx2z=dxx2(reiθ2)2=dx(xreiθ2)(x+reiθ2)=12reiθ2(1xreiθ21x+reiθ2)dx=eiθ22rln(xreiθ2x+reiθ2)+C.

Commented by mathmax by abdo last updated on 01/Sep/19

sir mjs your answer is correct .

sirmjsyouransweriscorrect.

Commented by mathmax by abdo last updated on 01/Sep/19

∫_0 ^∞   (dx/(x^2 −z)) =(e^(−((iθ)/2)) /(2(√r)))[ln(((x−(√r)e^((iθ)/2) )/(x+(√r)e^((iθ)/2) )))]_0 ^(+∞) =(e^(−((iθ)/2)) /(2(√r)))(−ln(−1)) =((iπ)/(2(2(√r))e^((iθ)/2) ))  =((iπ)/(4(√r)e^((iθ)/2) ))   with z =r e^(iθ)  .

0dxx2z=eiθ22r[ln(xreiθ2x+reiθ2)]0+=eiθ22r(ln(1))=iπ2(2r)eiθ2=iπ4reiθ2withz=reiθ.

Commented by MJS last updated on 01/Sep/19

thank you  I just wasn′t sure if this was allowed in C

thankyouIjustwasntsureifthiswasallowedinC

Terms of Service

Privacy Policy

Contact: info@tinkutara.com