Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67932 by mathmax by abdo last updated on 02/Sep/19

let A(θ) = ∫_0 ^∞     (dx/((x^2 +3)(x^4 −e^(iθ) )))  with  0<θ<(π/2)  1) calculate A(θ) interms of θ  2) determine also ∫_0 ^∞    (dx/((x^2 +3)(x^4 −e^(iθ) )^2 ))

letA(θ)=0dx(x2+3)(x4eiθ)with0<θ<π2 1)calculateA(θ)intermsofθ 2)determinealso0dx(x2+3)(x4eiθ)2

Commented byMJS last updated on 02/Sep/19

I get (1)  A(θ)=−((π(2(√3)e^(i((3θ)/4)) −3e^(i(θ/2)) −9))/(12e^(i((3θ)/4)) (e^(iθ) −9)))  can this be right?

Iget(1)A(θ)=π(23ei3θ43eiθ29)12ei3θ4(eiθ9) canthisberight?

Commented bymathmax by abdo last updated on 02/Sep/19

1) A(θ)=∫_0 ^∞   (dx/((x^2  +3)(x^4 −e^(iθ) ))) ⇒2A(θ)=∫_(−∞) ^(+∞)  (dx/((x^2  +3)(x^4 −e^(iθ) )))  let W(z) =(1/((z^2 +3)(z^4 −e^(iθ) )))  poles of W?  z^4 −e^(iθ)  =0 ⇒z^4 =e^(iθ)      let z =r e^(iα)  ⇒r=1 and 4α =θ +2kπ ⇒  α_k =((θ+2kπ)/4)  ⇒ the roots are Z_k =e^(i((θ+2kπ)/4))   and k∈[[0,3]]  Z_0 =e^((iθ)/4)     ,Z_1 =e^(i(((θ+2π)/4))) =e^(((iθ)/4)+((iπ)/2))   , Z_2 =e^(i(((θ+4π)/4))) =e^(((iθ)/4)+iπ)   Z_3   = e^(i(((θ+6π)/4)))  =e^(((iθ)/4)+i((3π)/2)) =e^(((iθ)/4)+i(2π−(π/2))) =e^(i((θ/4)−(π/2)))   Z_1 =i e^((iπ)/4)  =i{cos((π/4))+isin((π/4))}=−sin(π/4)+icos((π/4))⇒im(z_1 )>0  im(Z_0 )>0  im(Z_2 )<0  im(z_3 )<0  z^2 +3 =z^2 −(i(√3))^2  =(z−i(√3))(z+i(√3)) so the roots are +^− i(√3)  residu theorem ⇒ ∫_(−∞) ^(+∞)  W(z)dz =2iπ{Res(W,i(√3))  +Res(W,Z_0 )+Res(W,Z_1 )} we have  W(z) =(1/((z−i(√3))(z+i(√3))(z−Z_0 )(z−Z_1 )(z−Z_2 )(z−Z_3 ))) ⇒  Res(W,i(√3)) =(1/((2i(√3))((i(√3))^4 −e^(iθ) ))) =(1/((2i(√3))(9−e^(iθ) )))  Res(W,Z_0 ) =(1/((Z_0 ^2 +3)(Z_0 −Z_1 )(Z_0 −Z_2 )(Z_0 −Z_3 )))  Res(W,Z_1 ) =(1/((Z_1 ^2  +3)(Z_1 −Z_0 )(Z_1 −Z_2 )(Z_1 −Z_3 )))  rest to finich the calculus ....

1)A(θ)=0dx(x2+3)(x4eiθ)2A(θ)=+dx(x2+3)(x4eiθ) letW(z)=1(z2+3)(z4eiθ)polesofW? z4eiθ=0z4=eiθletz=reiαr=1and4α=θ+2kπ αk=θ+2kπ4therootsareZk=eiθ+2kπ4andk[[0,3]] Z0=eiθ4,Z1=ei(θ+2π4)=eiθ4+iπ2,Z2=ei(θ+4π4)=eiθ4+iπ Z3=ei(θ+6π4)=eiθ4+i3π2=eiθ4+i(2ππ2)=ei(θ4π2) Z1=ieiπ4=i{cos(π4)+isin(π4)}=sinπ4+icos(π4)im(z1)>0 im(Z0)>0im(Z2)<0im(z3)<0 z2+3=z2(i3)2=(zi3)(z+i3)sotherootsare+i3 residutheorem+W(z)dz=2iπ{Res(W,i3) +Res(W,Z0)+Res(W,Z1)}wehave W(z)=1(zi3)(z+i3)(zZ0)(zZ1)(zZ2)(zZ3) Res(W,i3)=1(2i3)((i3)4eiθ)=1(2i3)(9eiθ) Res(W,Z0)=1(Z02+3)(Z0Z1)(Z0Z2)(Z0Z3) Res(W,Z1)=1(Z12+3)(Z1Z0)(Z1Z2)(Z1Z3) resttofinichthecalculus....

Commented bymathmax by abdo last updated on 02/Sep/19

perhaps because i dont complete the calculus..

perhapsbecauseidontcompletethecalculus..

Commented bymathmax by abdo last updated on 02/Sep/19

2) we have A^′ (θ) =∫_0 ^∞    (e^(iθ) /((x^2  +3)(x^4 −e^(iθ) )^2 ))dx ⇒  ∫_0 ^∞ (dx/((x^2  +3)(x^4 −e^(iθ) )^2 )) =e^(−iθ)  A^′ (θ)  rest to calculate  A^′ (θ).

2)wehaveA(θ)=0eiθ(x2+3)(x4eiθ)2dx 0dx(x2+3)(x4eiθ)2=eiθA(θ)resttocalculateA(θ).

Answered by mind is power last updated on 02/Sep/19

let f(z)=(dz/((z^2 +3)(x^4 −e^(iθ) )))  pole of f are +_− i(√3)  ,e^(i((θ+2kπ)/4))     k≤4  we shose uper[half im(z)>0  plan and  use residus theorem  Res (f.i(√3))=(1/(2i(√3) (9−e^(iθ) )))  res (f,e^(iθ) )=(1/(4e^(i3θ) (e^(2iθ) +3)))  res (f,e^(i(θ+(π/2))) )=(1/(4e^(i(3θ+((3π)/2))) (−e^(i2θ) +3)))  ∫_0 ^(+∞) (dz/((z^2 +3)(z^4 +e^(iθ) )))=(1/2)∫_(−∞) ^(+∞) f(z)dz=iπΣ_(res >0 ) f(z)  =iπ[(1/(2i(√3)(9−e^(iθ) )))+(1/(4e^(3iθ) (e^(2iθ) +3)))+(1/(−4ie^(3iθ) (3−e^(2iθ) )))]  =((iπ)/)[((−i(9−e^(−iθ) ))/(2(√3)(82−18cos(θ))))+((e^(−3iθ) (3+e^(−2iθ) ))/(4(10+6cos(2θ))))+((ie^(−i3θ) (3−e^(−2iθ) ))/(4(10−6cos(2θ)))) )  2) (df/dθ)=∫(e^(iθ) /((z^2 +3)(z^4 −e^(iθ) )^2 ))dz=e^(iθ) ∫(1/((z^2 +3)(z^4 −e^(iθ) )))dz  ⇒∫(dx/((x^2 +3)(x^4 −e^(iθ) )))=f′(θ)e^(−iθ)

letf(z)=dz(z2+3)(x4eiθ) poleoffare+i3,eiθ+2kπ4k4 weshoseuper[halfim(z)>0plananduseresidustheorem Res(f.i3)=12i3(9eiθ) res(f,eiθ)=14ei3θ(e2iθ+3) res(f,ei(θ+π2))=14ei(3θ+3π2)(ei2θ+3) 0+dz(z2+3)(z4+eiθ)=12+f(z)dz=iπres>0f(z) =iπ[12i3(9eiθ)+14e3iθ(e2iθ+3)+14ie3iθ(3e2iθ)] =iπ[i(9eiθ)23(8218cos(θ))+e3iθ(3+e2iθ)4(10+6cos(2θ))+iei3θ(3e2iθ)4(106cos(2θ))) 2)dfdθ=eiθ(z2+3)(z4eiθ)2dz=eiθ1(z2+3)(z4eiθ)dz dx(x2+3)(x4eiθ)=f(θ)eiθ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com