Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 67960 by aseer imad last updated on 02/Sep/19

(d/dx)[tan^(−1) ((4x)/(√(1−4x^2 )))]  or  (d/dx)tan^(−1) (2tanθ)       [where 2x=sinθ ]     which comes later if done considering  2x=sinθ  please help

$$\frac{{d}}{{dx}}\left[{tan}^{−\mathrm{1}} \frac{\mathrm{4}{x}}{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}\right] \\ $$$${or} \\ $$$$\frac{{d}}{{dx}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{tan}\theta\right)\:\:\:\:\:\:\:\left[{where}\:\mathrm{2}{x}={sin}\theta\:\right] \\ $$$$\:\:\:{which}\:{comes}\:{later}\:{if}\:{done}\:{considering} \\ $$$$\mathrm{2}{x}={sin}\theta \\ $$$${please}\:{help} \\ $$

Commented by Prithwish sen last updated on 02/Sep/19

Let y = tan^(−1) ((4x)/(√(1−4x^2 )))  Now considering  2x = sinθ  diff. w.r.t θ we get (dx/dθ) =(1/2)Cosθ =(1/2)(√(1−4x^2 ))   Now the original expression turns out  y=tan^(−1) (2tanθ) again diff. w.r.t  θ  (dy/dθ) = (1/(1+4tan^2 θ)).2sec^2 θ =(2/(1+12x^2 ))  ∴((dy )/dx) = (dy/d𝛉).(d𝛉/dx)  = (4/((1+12x^2 )(√(1−4x^2 ))))  It can be done in direct method  (dy/dx) = (1/(1+(((4x)/(√(1−4x^2 ))))^2 )).((4(√(1−4x^2 ))+4x.((8x)/(2(√(1−4x^2 )))))/(1−4x^2 ))  =((1−4x^2 )/(1−4x^2 +16x^2 )).((4(1−4x^2 )+16x^2 )/((1−4x^2 )(√(1−4x^2 ))))   =(4/((1+12x^2 )(√(1−4x^2 ))))   please check.

$$\mathrm{Let}\:\mathrm{y}\:=\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4x}}{\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }} \\ $$$$\mathrm{Now}\:\mathrm{considering}\:\:\mathrm{2x}\:=\:\mathrm{sin}\theta \\ $$$$\mathrm{diff}.\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\theta\:\mathrm{we}\:\mathrm{get}\:\frac{\mathrm{dx}}{\mathrm{d}\theta}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Cos}\theta\:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }\: \\ $$$$\mathrm{Now}\:\mathrm{the}\:\mathrm{original}\:\mathrm{expression}\:\mathrm{turns}\:\mathrm{out} \\ $$$$\mathrm{y}=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2tan}\theta\right)\:\mathrm{again}\:\mathrm{diff}.\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:\:\theta \\ $$$$\frac{\mathrm{dy}}{\mathrm{d}\theta}\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{4tan}^{\mathrm{2}} \theta}.\mathrm{2sec}^{\mathrm{2}} \theta\:=\frac{\mathrm{2}}{\mathrm{1}+\mathrm{12x}^{\mathrm{2}} } \\ $$$$\therefore\frac{\boldsymbol{\mathrm{dy}}\:}{\boldsymbol{\mathrm{dx}}}\:=\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{d}\theta}}.\frac{\boldsymbol{\mathrm{d}\theta}}{\boldsymbol{\mathrm{dx}}}\:\:=\:\frac{\mathrm{4}}{\left(\mathrm{1}+\mathrm{12}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} }} \\ $$$$\mathrm{It}\:\mathrm{can}\:\mathrm{be}\:\mathrm{done}\:\mathrm{in}\:\mathrm{direct}\:\mathrm{method} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{\mathrm{4x}}{\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}\right)^{\mathrm{2}} }.\frac{\mathrm{4}\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }+\mathrm{4x}.\frac{\mathrm{8x}}{\mathrm{2}\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}}{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} +\mathrm{16x}^{\mathrm{2}} }.\frac{\mathrm{4}\left(\mathrm{1}−\mathrm{4x}^{\mathrm{2}} \right)+\mathrm{16x}^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{4x}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}\: \\ $$$$=\frac{\mathrm{4}}{\left(\mathrm{1}+\mathrm{12}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\sqrt{\mathrm{1}−\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} }}\:\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$

Commented by MJS last updated on 02/Sep/19

(d/dx)[arctan u(x)]=((u′(x))/((u(x))^2 +1))  u(x)=((4x)/(√(1−4x^2 )))  u′(x)=(4/(√((1−4x^2 )^3 )))  (u(x))^2 +1=((12x^2 +1)/(1−4x^2 ))  ((u′(x))/((u(x))^2 +1))=(4/((12x^2 +1)(√(1−4x^2 ))))

$$\frac{{d}}{{dx}}\left[\mathrm{arctan}\:{u}\left({x}\right)\right]=\frac{{u}'\left({x}\right)}{\left({u}\left({x}\right)\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$${u}\left({x}\right)=\frac{\mathrm{4}{x}}{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }} \\ $$$${u}'\left({x}\right)=\frac{\mathrm{4}}{\sqrt{\left(\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$$$\left({u}\left({x}\right)\right)^{\mathrm{2}} +\mathrm{1}=\frac{\mathrm{12}{x}^{\mathrm{2}} +\mathrm{1}}{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} } \\ $$$$\frac{{u}'\left({x}\right)}{\left({u}\left({x}\right)\right)^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{4}}{\left(\mathrm{12}{x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com