Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67972 by mathmax by abdo last updated on 02/Sep/19

if F(x)=∫_(u(x)) ^(v(x)) g(x,t)dt     determine a expression for F^′ (x).

$${if}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} {g}\left({x},{t}\right){dt}\:\:\:\:\:{determine}\:{a}\:{expression}\:{for}\:{F}\:^{'} \left({x}\right). \\ $$

Answered by Tanmay chaudhury last updated on 03/Sep/19

(dF/dx)=∫_(u(x)) ^(v(x))  (∂/∂x)(g(x,t)dx)+((dv(x))/dx)g(x,v(x))−((du(x))/dx)g(x,u(x))

$$\frac{{dF}}{{dx}}=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} \:\frac{\partial}{\partial{x}}\left({g}\left({x},{t}\right){dx}\right)+\frac{{dv}\left({x}\right)}{{dx}}{g}\left({x},{v}\left({x}\right)\right)−\frac{{du}\left({x}\right)}{{dx}}{g}\left({x},{u}\left({x}\right)\right) \\ $$

Commented by mathmax by abdo last updated on 03/Sep/19

can you sind the sourse of this formula sir tanmay or   send the proof ...

$${can}\:{you}\:{sind}\:{the}\:{sourse}\:{of}\:{this}\:{formula}\:{sir}\:{tanmay}\:{or}\: \\ $$$${send}\:{the}\:{proof}\:... \\ $$

Commented by Tanmay chaudhury last updated on 03/Sep/19

ok sir...

$${ok}\:{sir}... \\ $$

Commented by mind is power last updated on 03/Sep/19

in my comment F(x)=∫_v ^u g(x,t)dt

$${in}\:{my}\:{comment}\:{F}\left({x}\right)=\int_{{v}} ^{{u}} {g}\left({x},{t}\right){dt} \\ $$

Commented by mathmax by abdo last updated on 03/Sep/19

let verify this formulae by  F(x) =∫_x ^x^2  e^(−xt) dt we have  g(x,t) =e^(−xt)    , u(x)=x  and v(x)=x^2   gormulae give  F^′ (x) =∫_(u(x)) ^(v(x)) (∂g/∂x)(x,t)dt  +v^′ g(x,v)−u^′ g(x,u)  =∫_x ^x^2   −t e^(−xt)  dt  +(2x)e^(−x^3 ) −e^(−x^2 )    by partswe get  ∫_x ^x^2  t e^(−xt)  dt =[−(t/x)e^(−xt) ]_x ^x^2  −∫_x ^x^2  (−(1/x))e^(−xt) dt  =e^(−x^2 ) −x e^(−x^3 )  +(1/x) ∫_x ^x^2  e^(−xt) dt =e^(−x^2 ) −x e^(−x^3 ) +(1/x)[−(1/x)e^(−xt) ]_x ^x^2    =e^(−x^2 ) −xe^(−x^3 ) −(1/x^2 ){  e^(−x^3 ) −e^(−x^2 ) }  =(1+(1/x^2 ))e^(−x^2 ) −(x+(1/x^2 ))e^(−x^3  )  ⇒F^′ (x) =−(1+(1/x^2 ))e^(−x^2 ) +(x+(1/x^2 ))e^(−x^3 )   +2x e^(−x^3 ) −e^(−x^2 )  =−(2+(1/x^2 ) )e^(−x^2 ) (3x+(1/x^2 ))e^(−x^3 )  now let find F(x) directly  F(x) =[−(1/x)e^(−xt) ]_x ^x^2   =−(1/x){ e^(−x^3 ) −e^(−x^2 ) } =(1/x){e^(−x^2 ) −e^(−x^3 ) } ⇒  F^′ (x) =−(1/x^2 ){ e^(−x^2 ) −e^(−x^3 ) } +(1/x){−2x e^(−x^2 ) +3x^2 e^(−x^3 ) }  =−(1/x^2 )e^(−x^2 ) +(1/x^2 )e^(−x^3 ) −2e^(−x^2 )   +3x e^(−x^3 )   =−((1/x^2 ) +2)e^(−x^2 )   +(3x+(1/x^2 ))e^(−x^2 )      we get the same result  so the formulae is correct .

$${let}\:{verify}\:{this}\:{formulae}\:{by}\:\:{F}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} } {e}^{−{xt}} {dt}\:{we}\:{have} \\ $$$${g}\left({x},{t}\right)\:={e}^{−{xt}} \:\:\:,\:{u}\left({x}\right)={x}\:\:{and}\:{v}\left({x}\right)={x}^{\mathrm{2}} \:\:{gormulae}\:{give} \\ $$$${F}\:^{'} \left({x}\right)\:=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} \frac{\partial{g}}{\partial{x}}\left({x},{t}\right){dt}\:\:+{v}^{'} {g}\left({x},{v}\right)−{u}^{'} {g}\left({x},{u}\right) \\ $$$$=\int_{{x}} ^{{x}^{\mathrm{2}} } \:−{t}\:{e}^{−{xt}} \:{dt}\:\:+\left(\mathrm{2}{x}\right){e}^{−{x}^{\mathrm{3}} } −{e}^{−{x}^{\mathrm{2}} } \:\:\:{by}\:{partswe}\:{get} \\ $$$$\int_{{x}} ^{{x}^{\mathrm{2}} } {t}\:{e}^{−{xt}} \:{dt}\:=\left[−\frac{{t}}{{x}}{e}^{−{xt}} \right]_{{x}} ^{{x}^{\mathrm{2}} } −\int_{{x}} ^{{x}^{\mathrm{2}} } \left(−\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\boldsymbol{{e}}^{−\boldsymbol{{xt}}} \boldsymbol{{dt}} \\ $$$$=\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } −\boldsymbol{{x}}\:\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{3}} } \:+\frac{\mathrm{1}}{\boldsymbol{{x}}}\:\int_{{x}} ^{{x}^{\mathrm{2}} } {e}^{−{xt}} {dt}\:={e}^{−{x}^{\mathrm{2}} } −{x}\:{e}^{−{x}^{\mathrm{3}} } +\frac{\mathrm{1}}{{x}}\left[−\frac{\mathrm{1}}{{x}}{e}^{−{xt}} \right]_{{x}} ^{{x}^{\mathrm{2}} } \\ $$$$={e}^{−{x}^{\mathrm{2}} } −{xe}^{−{x}^{\mathrm{3}} } −\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left\{\:\:{e}^{−{x}^{\mathrm{3}} } −{e}^{−{x}^{\mathrm{2}} } \right\} \\ $$$$=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{−{x}^{\mathrm{2}} } −\left({x}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{−{x}^{\mathrm{3}} \:} \:\Rightarrow{F}\:^{'} \left({x}\right)\:=−\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{−{x}^{\mathrm{2}} } +\left({x}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{−{x}^{\mathrm{3}} } \\ $$$$+\mathrm{2}{x}\:{e}^{−{x}^{\mathrm{3}} } −{e}^{−{x}^{\mathrm{2}} } \:=−\left(\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:\right){e}^{−{x}^{\mathrm{2}} } \left(\mathrm{3}{x}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{−{x}^{\mathrm{3}} } \:{now}\:{let}\:{find}\:{F}\left({x}\right)\:{directly} \\ $$$${F}\left({x}\right)\:=\left[−\frac{\mathrm{1}}{{x}}{e}^{−{xt}} \right]_{{x}} ^{{x}^{\mathrm{2}} } \:=−\frac{\mathrm{1}}{{x}}\left\{\:{e}^{−{x}^{\mathrm{3}} } −{e}^{−{x}^{\mathrm{2}} } \right\}\:=\frac{\mathrm{1}}{{x}}\left\{{e}^{−{x}^{\mathrm{2}} } −{e}^{−{x}^{\mathrm{3}} } \right\}\:\Rightarrow \\ $$$${F}\:^{'} \left({x}\right)\:=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left\{\:{e}^{−{x}^{\mathrm{2}} } −{e}^{−{x}^{\mathrm{3}} } \right\}\:+\frac{\mathrm{1}}{{x}}\left\{−\mathrm{2}{x}\:{e}^{−{x}^{\mathrm{2}} } +\mathrm{3}{x}^{\mathrm{2}} {e}^{−{x}^{\mathrm{3}} } \right\} \\ $$$$=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{e}^{−{x}^{\mathrm{2}} } +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{e}^{−{x}^{\mathrm{3}} } −\mathrm{2}{e}^{−{x}^{\mathrm{2}} } \:\:+\mathrm{3}{x}\:{e}^{−{x}^{\mathrm{3}} } \\ $$$$=−\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\mathrm{2}\right){e}^{−{x}^{\mathrm{2}} } \:\:+\left(\mathrm{3}{x}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){e}^{−{x}^{\mathrm{2}} } \:\:\:\:\:{we}\:{get}\:{the}\:{same}\:{result} \\ $$$${so}\:{the}\:{formulae}\:{is}\:{correct}\:. \\ $$

Answered by mind is power last updated on 03/Sep/19

let G(x,t)=∫g(x,t)dt  F(x)=G(x,v(x))−G(x,u(x))  F′(x)=(∂/∂x){G(x,v(x))−G(x,u(x))}..1  (∂/∂x)(f(u,v))=(∂u/∂x).((∂f(u,v))/∂x)+(∂v/∂x).((∂f(u,v))/∂v)  we apply this in 1  F′(x)=  (∂/∂x)G(x,u(x))+(∂u/∂x) ((∂ G(x,u(x)))/∂t)−((∂G(x,v(x))/∂x)−(∂v/∂x).((∂G(x,v(x))/∂t)    withe ((∂G(x,t))/∂t)=g(x,t)  ((∂G(x,t))/∂x)=(∂/∂x)∫g(x,t)dt=∫((∂g(x,t))/∂x)dt  we get   ∫_0 ^u ((∂g(x,t)dt)/∂x)+u^′ g(x,u)−∫_0 ^v ((∂g(x,t))/∂x)dt−v^, g(x,v)  =∫_v ^u ((∂g(x,t))/∂x)dt+u^′ g(x,u)−v^′ g(x,v)

$${let}\:{G}\left({x},{t}\right)=\int{g}\left({x},{t}\right){dt} \\ $$$${F}\left({x}\right)={G}\left({x},{v}\left({x}\right)\right)−{G}\left({x},{u}\left({x}\right)\right) \\ $$$${F}'\left({x}\right)=\frac{\partial}{\partial{x}}\left\{{G}\left({x},{v}\left({x}\right)\right)−{G}\left({x},{u}\left({x}\right)\right)\right\}..\mathrm{1} \\ $$$$\frac{\partial}{\partial{x}}\left({f}\left({u},{v}\right)\right)=\frac{\partial{u}}{\partial{x}}.\frac{\partial{f}\left({u},{v}\right)}{\partial{x}}+\frac{\partial{v}}{\partial{x}}.\frac{\partial{f}\left({u},{v}\right)}{\partial{v}} \\ $$$${we}\:{apply}\:{this}\:{in}\:\mathrm{1} \\ $$$${F}'\left({x}\right)=\:\:\frac{\partial}{\partial{x}}{G}\left({x},{u}\left({x}\right)\right)+\frac{\partial{u}}{\partial{x}}\:\frac{\partial\:{G}\left({x},{u}\left({x}\right)\right)}{\partial{t}}−\frac{\partial{G}\left({x},{v}\left({x}\right)\right.}{\partial{x}}−\frac{\partial{v}}{\partial{x}}.\frac{\partial{G}\left({x},{v}\left({x}\right)\right.}{\partial{t}}\:\: \\ $$$${withe}\:\frac{\partial{G}\left({x},{t}\right)}{\partial{t}}={g}\left({x},{t}\right) \\ $$$$\frac{\partial{G}\left({x},{t}\right)}{\partial{x}}=\frac{\partial}{\partial{x}}\int{g}\left({x},{t}\right){dt}=\int\frac{\partial{g}\left({x},{t}\right)}{\partial{x}}{dt} \\ $$$${we}\:{get}\: \\ $$$$\int_{\mathrm{0}} ^{{u}} \frac{\partial{g}\left({x},{t}\right){dt}}{\partial{x}}+{u}^{'} {g}\left({x},{u}\right)−\int_{\mathrm{0}} ^{{v}} \frac{\partial{g}\left({x},{t}\right)}{\partial{x}}{dt}−{v}^{,} {g}\left({x},{v}\right) \\ $$$$=\int_{{v}} ^{{u}} \frac{\partial{g}\left({x},{t}\right)}{\partial{x}}{dt}+{u}^{'} {g}\left({x},{u}\right)−{v}^{'} {g}\left({x},{v}\right) \\ $$

Commented by mathmax by abdo last updated on 10/Sep/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com