Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 67983 by peter frank last updated on 03/Sep/19

Commented by Abdo msup. last updated on 03/Sep/19

b) let f(x)=((1/x))^(x )  ⇒f(x)=x^(−x)  =e^(−xln(x))   f is?defined on ]0,+∞[  lim_(x→0 and x>0)    f(x)=e^(0=1)   lim_(x→+∞) f(x) =lim_(x→+∞)    e^(−xlnx) =0  f^′ (x)= (−lnx−1)e^(−xlnx)  =−(lnx+1)f(x)  f^′ (x) =0  ⇔lnx+1=0  ⇔lnx =−1 ⇔x=e^(−1)   (see thst f)x>0 )  f(e^(−1) ) =e^(−e^(−1) ln(e^(−1) ))  =e^(1/e)   f^′ (x)>0 ⇔ lnx +1<0 ⇔lnx<−1 ⇔x<e^(−1)   varistion of f  x           0                 e^(−1)                          +∞  f^′ (x)             +      0              −  f(x)    1 incr       e^(1/e)         dcres        0  ⇒ max f(x)_(x>0)     =f(e^(−1) ) = e^(1/e)

$$\left.{b}\right)\:{let}\:{f}\left({x}\right)=\left(\frac{\mathrm{1}}{{x}}\right)^{{x}\:} \:\Rightarrow{f}\left({x}\right)={x}^{−{x}} \:={e}^{−{xln}\left({x}\right)} \\ $$$$\left.{f}\:{is}?{defined}\:{on}\:\right]\mathrm{0},+\infty\left[\right. \\ $$$${lim}_{{x}\rightarrow\mathrm{0}\:{and}\:{x}>\mathrm{0}} \:\:\:{f}\left({x}\right)={e}^{\mathrm{0}=\mathrm{1}} \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:={lim}_{{x}\rightarrow+\infty} \:\:\:{e}^{−{xlnx}} =\mathrm{0} \\ $$$${f}^{'} \left({x}\right)=\:\left(−{lnx}−\mathrm{1}\right){e}^{−{xlnx}} \:=−\left({lnx}+\mathrm{1}\right){f}\left({x}\right) \\ $$$${f}^{'} \left({x}\right)\:=\mathrm{0}\:\:\Leftrightarrow{lnx}+\mathrm{1}=\mathrm{0}\:\:\Leftrightarrow{lnx}\:=−\mathrm{1}\:\Leftrightarrow{x}={e}^{−\mathrm{1}} \\ $$$$\left.\left({see}\:{thst}\:{f}\right){x}>\mathrm{0}\:\right) \\ $$$${f}\left({e}^{−\mathrm{1}} \right)\:={e}^{−{e}^{−\mathrm{1}} {ln}\left({e}^{−\mathrm{1}} \right)} \:={e}^{\frac{\mathrm{1}}{{e}}} \\ $$$${f}^{'} \left({x}\right)>\mathrm{0}\:\Leftrightarrow\:{lnx}\:+\mathrm{1}<\mathrm{0}\:\Leftrightarrow{lnx}<−\mathrm{1}\:\Leftrightarrow{x}<{e}^{−\mathrm{1}} \\ $$$${varistion}\:{of}\:{f} \\ $$$${x}\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{e}^{−\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:− \\ $$$${f}\left({x}\right)\:\:\:\:\mathrm{1}\:{incr}\:\:\:\:\:\:\:{e}^{\frac{\mathrm{1}}{{e}}} \:\:\:\:\:\:\:\:{dcres}\:\:\:\:\:\:\:\:\mathrm{0} \\ $$$$\Rightarrow\:{max}\:{f}\left({x}\right)_{{x}>\mathrm{0}} \:\:\:\:={f}\left({e}^{−\mathrm{1}} \right)\:=\:{e}^{\frac{\mathrm{1}}{{e}}} \\ $$

Answered by MJS last updated on 03/Sep/19

a) geometrically:  any rectangular triangle is one half of a  rectangle, the hypothenuse of the triangle  is one of the diagonals of the rectangle, the  diagonals bisect each other, the rectangle′s  circumcircle is the same as the triangle′s,  done

$$\left.{a}\right)\:\mathrm{geometrically}: \\ $$$$\mathrm{any}\:\mathrm{rectangular}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{one}\:\mathrm{half}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{rectangle},\:\mathrm{the}\:\mathrm{hypothenuse}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{is}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectangle},\:\mathrm{the} \\ $$$$\mathrm{diagonals}\:\mathrm{bisect}\:\mathrm{each}\:\mathrm{other},\:\mathrm{the}\:\mathrm{rectangle}'\mathrm{s} \\ $$$$\mathrm{circumcircle}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{the}\:\mathrm{triangle}'\mathrm{s}, \\ $$$$\mathrm{done} \\ $$

Commented by peter frank last updated on 03/Sep/19

thanks

$${thanks}\: \\ $$

Answered by MJS last updated on 03/Sep/19

b)  f(x)=x^(−x)   f′(x)=−(1+ln x)x^(−x)   f′(x)=0 ⇒ ln x =−1 ⇒ x=e^(−1)   f′′(x)=(x(1+ln x)^2 −1)x^(−(x+1))   f′′(e^(−1) )=−e^(1+(1/e)) <0 ⇒  ⇒ maximum at x=e^(−1) ; f(e^(−1) )=e^(1/e)

$$\left.{b}\right) \\ $$$${f}\left({x}\right)={x}^{−{x}} \\ $$$${f}'\left({x}\right)=−\left(\mathrm{1}+\mathrm{ln}\:{x}\right){x}^{−{x}} \\ $$$${f}'\left({x}\right)=\mathrm{0}\:\Rightarrow\:\mathrm{ln}\:{x}\:=−\mathrm{1}\:\Rightarrow\:{x}=\mathrm{e}^{−\mathrm{1}} \\ $$$${f}''\left({x}\right)=\left({x}\left(\mathrm{1}+\mathrm{ln}\:{x}\right)^{\mathrm{2}} −\mathrm{1}\right){x}^{−\left({x}+\mathrm{1}\right)} \\ $$$${f}''\left(\mathrm{e}^{−\mathrm{1}} \right)=−\mathrm{e}^{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{e}}} <\mathrm{0}\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{maximum}\:\mathrm{at}\:{x}=\mathrm{e}^{−\mathrm{1}} ;\:{f}\left(\mathrm{e}^{−\mathrm{1}} \right)=\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{e}}} \\ $$

Commented by peter frank last updated on 03/Sep/19

thank you

$${thank}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com