Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68100 by ~ À ® @ 237 ~ last updated on 04/Sep/19

Find  K=∫_0 ^1   ((ln(1−t+t^2 ))/t) dt

FindK=01ln(1t+t2)tdt

Commented by mind is power last updated on 05/Sep/19

y,re welcom

y,rewelcom

Commented by mind is power last updated on 05/Sep/19

f(s)=∫_0 ^1 ((ln(1−(t−t^2 )s))/t)  s∈[0,1]  f′(s)=∫_0 ^1 ((−(t−t^2 ))/(t(1−(t−t^2 )s)))dt  =∫_0 ^1 ((t−1)/(1−(t−t^2 )s))dt  ∫_0 ^1 ((t−1)/(t^2 s−ts+1))dt  =∫_0 ^1 ((t−(1/2))/(t^2 s−ts+1))−(1/2)∫_0 ^1 (1/(t^2 s−ts+1))dt  =(1/(2s))[ln(t^2 s−ts+1)]_0 ^1 −(1/(2s))∫_0 ^1 (dt/(t^2 −t+(1/s)))  −(1/(2s))∫_0 ^1 (dt/((t−(1/2))^2 +(1/s)−(1/4)))  −(2/(4−s))∫_0 ^1 (dt/({((t−(1/2)).(√((4s)/(4−s))))^2 +1}.))  =−(1/(√(s(4−s))))[arctan((t−(1/2))(√((4s)/(4−s))))]_0 ^1   =−(2/(√(s(4−s))))[arctg((√(s/(4−s))))]  f(s)=∫−(2/(√(s(4−s))))arctan((√(s/(4−s))))ds  let u=(√(s/(4−s)))⇒s=((4u^2 )/(u^2 +1))  ds=((8u)/((1+u^2 )^2 ))du  s(4−s)=((16u^2 )/((u^2 +1)^2 ))  ∫((−2)/(√(s(4−s))))[arctan((√((4s)/(4−s))))]ds  =∫((−2)/(√((16u^2 )/((u^2 +1)^2 )))).arctan(u).((8u)/((1+u^2 )^2 ))  =∫((−2(u^2 +1))/(4u))arctan(u).((8u)/((1+u^2 )))du  =∫((−4)/(1+u^2 ))arctan(u)du  =−2(arctan(u))^2 +c  =−2(arctan((√(s/(4−s)))))^2 +c=f(s)  f(0)=0=>c=0  f(s)=−2(arctan((√(s/(4−s)))))^2   k=f(1)=−2(arctan((1/(√3))))^2 =−2((π/6))^2 =((−π^2 )/(18))

f(s)=01ln(1(tt2)s)ts[0,1]f(s)=01(tt2)t(1(tt2)s)dt=01t11(tt2)sdt01t1t2sts+1dt=01t12t2sts+112011t2sts+1dt=12s[ln(t2sts+1)]0112s01dtt2t+1s12s01dt(t12)2+1s1424s01dt{((t12).4s4s)2+1}.=1s(4s)[arctan((t12)4s4s)]01=2s(4s)[arctg(s4s)]f(s)=2s(4s)arctan(s4s)dsletu=s4ss=4u2u2+1ds=8u(1+u2)2dus(4s)=16u2(u2+1)22s(4s)[arctan(4s4s)]ds=216u2(u2+1)2.arctan(u).8u(1+u2)2=2(u2+1)4uarctan(u).8u(1+u2)du=41+u2arctan(u)du=2(arctan(u))2+c=2(arctan(s4s))2+c=f(s)f(0)=0=>c=0f(s)=2(arctan(s4s))2k=f(1)=2(arctan(13))2=2(π6)2=π218

Commented by ~ À ® @ 237 ~ last updated on 05/Sep/19

Thanks  you sir  let consider  g defined by  g(a)=∫_0 ^1 ((  ln(1+at+t^2 ))/t)dt   ,  we have  D_g =[−2;2]  when stating   t=(1/u)       we get   g(a)=∫_1 ^∞  [((−2lnt)/t) + ((ln(1+at+t^2 ))/t) ]dt  Now g′(a)= ∫_1 ^∞  (1/t) .(t/(1+at+t^2 )) dt  using  t^2 +at+1=[(t+(a/2))+((4−a^2 )/4)]=(((4−a^2 )/4))[(((2t+a)/(√(4−a^2 ))))^2 +1]      cause  a∈D_g    So  g′(a)=(4/(4−a^2 )) ∫_1 ^∞ ((  1)/(1+(((2t+a)/((√(4−a^2 )) )))^2 )) dt =(2/((√(4−a^2 )) )) [arctan(((2t+a)/((√(4−a^2 )) )))]_1 ^∞   we get  g′(a)= ((π−2arctan(((2+a)/(√(4−a^2 )))))/((√(4−a^2 )) ))   Now  g(a)=∫ (π/((√(4−a^2 )) ))da −2∫ ((arctan((√(((2+a)/(2−a)) )) ))/(√(4−a^2 )))da  for the second whole let state   u=(√((2+a)/(2−a)))   ⇒a=((2(u^2 −1))/(1+u^2 ))  and  (√(4−a^2 )) =((4u)/(1+u^2 ))  , da= ((8udu)/((1+u^2 )^2 ))   g(a)= ∫ π((1/2)/(√(1−((a/2))^2 ))) da − 2∫   ((2arctanu)/(1+u^2 )) du      then  g(a)= πarcsin((a/2)) −2(arctan(√((2+a)/(2−a))) )^2 +c  firstly  g(−2)=∫_0 ^1 ((ln(1−2t+t^2 ))/t)dt=2∫_0 ^1 ((ln(1−t))/t)dt  g(−2)=−2∫_0 ^1  Σ_(n=1) ^∞ (t^(n−1) /n) =−2Σ_(n=1_ ) ^∞  (1/n^2 ) =−(π^2 /3)   secondly  g(−2)=−(π^2 /2)+c  then c=(π^2 /6)    Finally  we were searching about  g(−1)= πarcsin(((−1)/2)) −2(arctan((1/(√3))))^2 +(π^2 /6)     g(−1)=((−π^2 )/6) −((2π^2 )/(36)) +(π^2 /6)=−(π^2 /(18))

Thanksyousirletconsidergdefinedbyg(a)=01ln(1+at+t2)tdt,wehaveDg=[2;2]whenstatingt=1uwegetg(a)=1[2lntt+ln(1+at+t2)t]dtNowg(a)=11t.t1+at+t2dtusingt2+at+1=[(t+a2)+4a24]=(4a24)[(2t+a4a2)2+1]causeaDgSog(a)=44a2111+(2t+a4a2)2dt=24a2[arctan(2t+a4a2)]1wegetg(a)=π2arctan(2+a4a2)4a2Nowg(a)=π4a2da2arctan(2+a2a)4a2daforthesecondwholeletstateu=2+a2aa=2(u21)1+u2and4a2=4u1+u2,da=8udu(1+u2)2g(a)=π121(a2)2da22arctanu1+u2dutheng(a)=πarcsin(a2)2(arctan2+a2a)2+cfirstlyg(2)=01ln(12t+t2)tdt=201ln(1t)tdtg(2)=201n=1tn1n=2n=11n2=π23secondlyg(2)=π22+cthenc=π26Finallyweweresearchingaboutg(1)=πarcsin(12)2(arctan(13))2+π26g(1)=π262π236+π26=π218

Commented by mathmax by abdo last updated on 06/Sep/19

let f(x) =∫_0 ^1  ((ln(1+xt +t^2 ))/t)dt    we must have t^2  +xt +1>0 for all t⇒  x^2 −4<0 ⇒−2<x<2  we have f^′ (x)=∫_0 ^1  (t/(t(1+xt+t^2 )))dt  =∫_0 ^1    (dt/(t^2  +xt +1)) =_(t=(1/u))     −∫_1 ^(+∞)    ((−du)/(u^2 {(1/u^2 ) +(x/u)+1}))  =∫_1 ^(+∞)   (du/(1+xu+u^2 )) =∫_1 ^(+∞)   (du/(u^2  +2(x/2)u +(x^2 /4)+1−(x^2 /4)))  =∫_1 ^(+∞)   (du/((u+(x/2))^2 +((4−x^2 )/4))) changement  u+(x/2) =((√(4−x^2 ))/2)z givez=((2u+x)/(√(4−x^2 )))  f^′ (x) =(4/(4−x^2 ))  ∫_((2+x)/(√(4−x^2 ))) ^(+∞)   (1/(1+z^2 ))×((√(4−x^2 ))/2)dz  =(2/(√(4−x^2 )))∫_((2+x)/(√(4−x^2 ))) ^(+∞)   (dz/(1+z^2 )) =(2/(√(4−x^2 )))[arctanz]_((2+x)/(√(4−x^2 ))) ^(+∞)   =(2/(√(4−x^2 ))){(π/2) −arctan(((2+x)/(√(4−x^2 ))))}=(π/(√(4−x^2 )))−(2/(√(4−x^2 ))) arctan(((2+x)/(√(4−x^2 ))))  ⇒f(x) =∫ ((πdx)/(√(4−x^2 ))) −2 ∫  (1/(√(4−x^2 ))) arctan(((2+x)/(√(4−x^2 )))) +c  changement  x =2cosθ give  ∫ (1/(√(4−x^2 ))) arctan(((2+x)/(√(4−x^2 )))) =∫ (1/(2sinθ)) arctan(((2+2cosθ)/(2sinθ)))(−2sinθ)cosθ  =−∫  arctan(((2cos^2 ((θ/2)))/(2cos((θ/2))sin((θ/2))))) =−∫  arctan((1/(tanθ)))  =−((π/2)−θ) =θ−(π/2) =arcos((x/2))−(π/2)  ∫ ((πdx)/(√(4−x^2 ))) =_(x =2cosθ)     ∫  ((−2πsinθ dθ)/(2sinθ)) =−πθ =−πarccos((x/2)) ⇒  f(x)=−π arcos((x/2))−2 arcos((x/2))+π +c  =π−(π+2) arcos((x/2)) +c  f(0) =π−(π+2)(π/2) +c =π−(π^2 /2)−π +c =c−(π^2 /2) ⇒c =(π^2 /2)+f(0)  =(π^2 /2) +∫_0 ^1   ((ln(1+t^2 ))/t)dt  we have ln^, (1+u) =(1/(1+u)) =Σ_(n=0) ^∞  (−1)^n u^n  ⇒  ln(1+u) =Σ_(n=0) ^∞  (((−1)^n u^n )/(n+1)) +c(c=0)=Σ_(n=1) ^∞ (−1)^(n−1) (u^n /n)  ⇒  ln(1+t^2 ) =Σ_(n=1) ^∞  (((−1)^(n−1) t^(2n) )/n) ⇒((ln(1+t^2 ))/t) =Σ_(n=1) ^∞  (((−1)^(n−1) t^(2n−1) )/n)  ⇒∫_0 ^1   ((ln(1+t^2 ))/t)dt =Σ_(n=1) ^∞  (((−1)^n )/n) ∫_0 ^1   t^(2n−1) dt =Σ_(n=1) ^∞ (((−1)^n )/(2n^2 ))  =(1/2)Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(1/2)(2^(1−2) −1)ξ(2)=−(1/4)(π^2 /6) =−(π^2 /(24)) ⇒  c =(π^2 /2)−(π^2 /(24))    be continued...

letf(x)=01ln(1+xt+t2)tdtwemusthavet2+xt+1>0foralltx24<02<x<2wehavef(x)=01tt(1+xt+t2)dt=01dtt2+xt+1=t=1u1+duu2{1u2+xu+1}=1+du1+xu+u2=1+duu2+2x2u+x24+1x24=1+du(u+x2)2+4x24changementu+x2=4x22zgivez=2u+x4x2f(x)=44x22+x4x2+11+z2×4x22dz=24x22+x4x2+dz1+z2=24x2[arctanz]2+x4x2+=24x2{π2arctan(2+x4x2)}=π4x224x2arctan(2+x4x2)f(x)=πdx4x2214x2arctan(2+x4x2)+cchangementx=2cosθgive14x2arctan(2+x4x2)=12sinθarctan(2+2cosθ2sinθ)(2sinθ)cosθ=arctan(2cos2(θ2)2cos(θ2)sin(θ2))=arctan(1tanθ)=(π2θ)=θπ2=arcos(x2)π2πdx4x2=x=2cosθ2πsinθdθ2sinθ=πθ=πarccos(x2)f(x)=πarcos(x2)2arcos(x2)+π+c=π(π+2)arcos(x2)+cf(0)=π(π+2)π2+c=ππ22π+c=cπ22c=π22+f(0)=π22+01ln(1+t2)tdtwehaveln,(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nunn+1+c(c=0)=n=1(1)n1unnln(1+t2)=n=1(1)n1t2nnln(1+t2)t=n=1(1)n1t2n1n01ln(1+t2)tdt=n=1(1)nn01t2n1dt=n=1(1)n2n2=12n=1(1)nn2=12(2121)ξ(2)=14π26=π224c=π22π224becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com