Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68145 by Joel122 last updated on 06/Sep/19

Find the arc length, given the curve  x(t) = sin (πt),  y(t) = t ,  0 ≤ t ≤ 1

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{length},\:\mathrm{given}\:\mathrm{the}\:\mathrm{curve} \\ $$$${x}\left({t}\right)\:=\:\mathrm{sin}\:\left(\pi{t}\right),\:\:{y}\left({t}\right)\:=\:{t}\:,\:\:\mathrm{0}\:\leqslant\:{t}\:\leqslant\:\mathrm{1} \\ $$

Commented by Joel122 last updated on 06/Sep/19

x′(t) = π cos (πt), y′(t) = 1    L = ∫_0 ^1  (√((x′(t))^2  + (y′(t))^2 )) dt       = ∫_0 ^1  (√(π^2 cos^2  (πt) + 1))  dt    I′m stuck with the integral. Please help

$${x}'\left({t}\right)\:=\:\pi\:\mathrm{cos}\:\left(\pi{t}\right),\:{y}'\left({t}\right)\:=\:\mathrm{1} \\ $$$$ \\ $$$${L}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\left({x}'\left({t}\right)\right)^{\mathrm{2}} \:+\:\left({y}'\left({t}\right)\right)^{\mathrm{2}} }\:{dt} \\ $$$$\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\sqrt{\pi^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\left(\pi{t}\right)\:+\:\mathrm{1}}\:\:{dt} \\ $$$$ \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{stuck}\:\mathrm{with}\:\mathrm{the}\:\mathrm{integral}.\:\mathrm{Please}\:\mathrm{help} \\ $$

Commented by MJS last updated on 06/Sep/19

this can′t be solved using elementary calculus  it′s an elliptic integral

$$\mathrm{this}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{using}\:\mathrm{elementary}\:\mathrm{calculus} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{an}\:{elliptic}\:{integral} \\ $$

Commented by MJS last updated on 06/Sep/19

https://en.m.wikipedia.org/wiki/Elliptic_integral

Commented by Joel122 last updated on 06/Sep/19

thank you Sir

$${thank}\:{you}\:{Sir} \\ $$

Commented by MJS last updated on 06/Sep/19

the path is  u=πt → dt=(du/π)  this leads to  ((√(1+π^2 ))/π)∫(√(1−(π^2 /(1+π^2 ))sin^2  u))=((√(1+π^2 ))/π)E (u∣(π^2 /(1+π^2 ))) =  =((√(1+π^2 ))/π)E (πt∣(π^2 /(1+π^2 ))) +C

$$\mathrm{the}\:\mathrm{path}\:\mathrm{is} \\ $$$${u}=\pi{t}\:\rightarrow\:{dt}=\frac{{du}}{\pi} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\frac{\sqrt{\mathrm{1}+\pi^{\mathrm{2}} }}{\pi}\int\sqrt{\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{1}+\pi^{\mathrm{2}} }\mathrm{sin}^{\mathrm{2}} \:{u}}=\frac{\sqrt{\mathrm{1}+\pi^{\mathrm{2}} }}{\pi}\mathrm{E}\:\left({u}\mid\frac{\pi^{\mathrm{2}} }{\mathrm{1}+\pi^{\mathrm{2}} }\right)\:= \\ $$$$=\frac{\sqrt{\mathrm{1}+\pi^{\mathrm{2}} }}{\pi}\mathrm{E}\:\left(\pi{t}\mid\frac{\pi^{\mathrm{2}} }{\mathrm{1}+\pi^{\mathrm{2}} }\right)\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com